Cargando…
Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts
Ultraviolet-B (UV-B; 280–315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420–490 nm) or green (490–585 nm) light. Flavonoids act as antioxidants and shielding components in the plant’s response to UV-B exposure....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875886/ https://www.ncbi.nlm.nih.gov/pubmed/33584754 http://dx.doi.org/10.3389/fpls.2020.611247 |
_version_ | 1783649857759608832 |
---|---|
author | Neugart, Susanne Majer, Petra Schreiner, Monika Hideg, Éva |
author_facet | Neugart, Susanne Majer, Petra Schreiner, Monika Hideg, Éva |
author_sort | Neugart, Susanne |
collection | PubMed |
description | Ultraviolet-B (UV-B; 280–315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420–490 nm) or green (490–585 nm) light. Flavonoids act as antioxidants and shielding components in the plant’s response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m(–2) day(–1) UV-B(BE)), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m(–2) s(–1)) or green (119 μmol m(–2) s(–1)) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MS(n). Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while—contrary to this—in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers. |
format | Online Article Text |
id | pubmed-7875886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78758862021-02-12 Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts Neugart, Susanne Majer, Petra Schreiner, Monika Hideg, Éva Front Plant Sci Plant Science Ultraviolet-B (UV-B; 280–315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420–490 nm) or green (490–585 nm) light. Flavonoids act as antioxidants and shielding components in the plant’s response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m(–2) day(–1) UV-B(BE)), which was followed with two subsequent (equals 2 days) doses of either blue (99 μmol m(–2) s(–1)) or green (119 μmol m(–2) s(–1)) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MS(n). Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while—contrary to this—in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers. Frontiers Media S.A. 2021-01-28 /pmc/articles/PMC7875886/ /pubmed/33584754 http://dx.doi.org/10.3389/fpls.2020.611247 Text en Copyright © 2021 Neugart, Majer, Schreiner and Hideg. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Neugart, Susanne Majer, Petra Schreiner, Monika Hideg, Éva Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title | Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title_full | Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title_fullStr | Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title_full_unstemmed | Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title_short | Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts |
title_sort | blue light treatment but not green light treatment after pre-exposure to uv-b stabilizes flavonoid glycoside changes and corresponding biological effects in three different brassicaceae sprouts |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875886/ https://www.ncbi.nlm.nih.gov/pubmed/33584754 http://dx.doi.org/10.3389/fpls.2020.611247 |
work_keys_str_mv | AT neugartsusanne bluelighttreatmentbutnotgreenlighttreatmentafterpreexposuretouvbstabilizesflavonoidglycosidechangesandcorrespondingbiologicaleffectsinthreedifferentbrassicaceaesprouts AT majerpetra bluelighttreatmentbutnotgreenlighttreatmentafterpreexposuretouvbstabilizesflavonoidglycosidechangesandcorrespondingbiologicaleffectsinthreedifferentbrassicaceaesprouts AT schreinermonika bluelighttreatmentbutnotgreenlighttreatmentafterpreexposuretouvbstabilizesflavonoidglycosidechangesandcorrespondingbiologicaleffectsinthreedifferentbrassicaceaesprouts AT hidegeva bluelighttreatmentbutnotgreenlighttreatmentafterpreexposuretouvbstabilizesflavonoidglycosidechangesandcorrespondingbiologicaleffectsinthreedifferentbrassicaceaesprouts |