Cargando…
Neuregulin‐1 alleviate oxidative stress and mitigate inflammation by suppressing NOX4 and NLRP3/caspase‐1 in myocardial ischaemia‐reperfusion injury
Neuregulin‐1 (NRG‐1) is reported to be cardioprotective through the extracellular‐regulated protein kinase (ERK) 1/2 pathway in myocardial ischaemia‐reperfusion injury (MIRI). NOX4‐induced ROS activated NLRP3 inflammasome and exacerbates MIRI. This study aims to investigate whether NRG‐1 can suppres...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875921/ https://www.ncbi.nlm.nih.gov/pubmed/33470533 http://dx.doi.org/10.1111/jcmm.16287 |
Sumario: | Neuregulin‐1 (NRG‐1) is reported to be cardioprotective through the extracellular‐regulated protein kinase (ERK) 1/2 pathway in myocardial ischaemia‐reperfusion injury (MIRI). NOX4‐induced ROS activated NLRP3 inflammasome and exacerbates MIRI. This study aims to investigate whether NRG‐1 can suppress NOX4 by ERK1/2 and consequently inhibit the NLRP3/caspase‐1 signal in MIRI. The myocardial infarct size (IS) was measured by TTC‐Evans blue staining. Immunohistochemical staining, real‐time quantitative PCR (RT‐qPCR) and Western blotting were used for detection of the factors, such as NOX4, ERK1/2, NLRP3, caspase‐1 and IL‐1β .The IS in the NRG‐1 (3 μg/kg, intravenous) group was lower than that in the IR group. Immunohistochemical analysis revealed NRG‐1 decreased 4HNE and NOX4. The RT‐qPCR and Western blot analyses revealed that NRG‐1 mitigated the IR‐induced up‐regulation of NOX4 and ROS production. Compared with the IR group, the NRG‐1 group exhibited a higher level of P‐ERK1/2 and a lower level of NLRP3. In the Langendorff model, PD98059 inhibited ERK1/2 and up‐regulated the expression of NOX4, NLRP3, caspase‐1 and IL‐1β, which exacerbated oxidative stress and inflammation. In conclusion, NRG‐1 can reduce ROS production by inhibiting NOX4 through ERK1/2 and inhibit the NLRP3/caspase‐1 pathway to attenuate myocardial oxidative damage and inflammation in MIRI. |
---|