Cargando…
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictiv...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876096/ https://www.ncbi.nlm.nih.gov/pubmed/33568735 http://dx.doi.org/10.1038/s41598-021-82760-w |
_version_ | 1783649907098255360 |
---|---|
author | Le, Elizabeth P. V. Rundo, Leonardo Tarkin, Jason M. Evans, Nicholas R. Chowdhury, Mohammed M. Coughlin, Patrick A. Pavey, Holly Wall, Chris Zaccagna, Fulvio Gallagher, Ferdia A. Huang, Yuan Sriranjan, Rouchelle Le, Anthony Weir-McCall, Jonathan R. Roberts, Michael Gilbert, Fiona J. Warburton, Elizabeth A. Schönlieb, Carola-Bibiane Sala, Evis Rudd, James H. F. |
author_facet | Le, Elizabeth P. V. Rundo, Leonardo Tarkin, Jason M. Evans, Nicholas R. Chowdhury, Mohammed M. Coughlin, Patrick A. Pavey, Holly Wall, Chris Zaccagna, Fulvio Gallagher, Ferdia A. Huang, Yuan Sriranjan, Rouchelle Le, Anthony Weir-McCall, Jonathan R. Roberts, Michael Gilbert, Fiona J. Warburton, Elizabeth A. Schönlieb, Carola-Bibiane Sala, Evis Rudd, James H. F. |
author_sort | Le, Elizabeth P. V. |
collection | PubMed |
description | Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk. |
format | Online Article Text |
id | pubmed-7876096 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78760962021-02-11 Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events Le, Elizabeth P. V. Rundo, Leonardo Tarkin, Jason M. Evans, Nicholas R. Chowdhury, Mohammed M. Coughlin, Patrick A. Pavey, Holly Wall, Chris Zaccagna, Fulvio Gallagher, Ferdia A. Huang, Yuan Sriranjan, Rouchelle Le, Anthony Weir-McCall, Jonathan R. Roberts, Michael Gilbert, Fiona J. Warburton, Elizabeth A. Schönlieb, Carola-Bibiane Sala, Evis Rudd, James H. F. Sci Rep Article Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk. Nature Publishing Group UK 2021-02-10 /pmc/articles/PMC7876096/ /pubmed/33568735 http://dx.doi.org/10.1038/s41598-021-82760-w Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Le, Elizabeth P. V. Rundo, Leonardo Tarkin, Jason M. Evans, Nicholas R. Chowdhury, Mohammed M. Coughlin, Patrick A. Pavey, Holly Wall, Chris Zaccagna, Fulvio Gallagher, Ferdia A. Huang, Yuan Sriranjan, Rouchelle Le, Anthony Weir-McCall, Jonathan R. Roberts, Michael Gilbert, Fiona J. Warburton, Elizabeth A. Schönlieb, Carola-Bibiane Sala, Evis Rudd, James H. F. Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title | Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_full | Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_fullStr | Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_full_unstemmed | Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_short | Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events |
title_sort | assessing robustness of carotid artery ct angiography radiomics in the identification of culprit lesions in cerebrovascular events |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876096/ https://www.ncbi.nlm.nih.gov/pubmed/33568735 http://dx.doi.org/10.1038/s41598-021-82760-w |
work_keys_str_mv | AT leelizabethpv assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT rundoleonardo assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT tarkinjasonm assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT evansnicholasr assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT chowdhurymohammedm assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT coughlinpatricka assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT paveyholly assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT wallchris assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT zaccagnafulvio assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT gallagherferdiaa assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT huangyuan assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT sriranjanrouchelle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT leanthony assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT weirmccalljonathanr assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT robertsmichael assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT gilbertfionaj assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT warburtonelizabetha assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT schonliebcarolabibiane assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT salaevis assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents AT ruddjameshf assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents |