Cargando…

Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events

Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Elizabeth P. V., Rundo, Leonardo, Tarkin, Jason M., Evans, Nicholas R., Chowdhury, Mohammed M., Coughlin, Patrick A., Pavey, Holly, Wall, Chris, Zaccagna, Fulvio, Gallagher, Ferdia A., Huang, Yuan, Sriranjan, Rouchelle, Le, Anthony, Weir-McCall, Jonathan R., Roberts, Michael, Gilbert, Fiona J., Warburton, Elizabeth A., Schönlieb, Carola-Bibiane, Sala, Evis, Rudd, James H. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876096/
https://www.ncbi.nlm.nih.gov/pubmed/33568735
http://dx.doi.org/10.1038/s41598-021-82760-w
_version_ 1783649907098255360
author Le, Elizabeth P. V.
Rundo, Leonardo
Tarkin, Jason M.
Evans, Nicholas R.
Chowdhury, Mohammed M.
Coughlin, Patrick A.
Pavey, Holly
Wall, Chris
Zaccagna, Fulvio
Gallagher, Ferdia A.
Huang, Yuan
Sriranjan, Rouchelle
Le, Anthony
Weir-McCall, Jonathan R.
Roberts, Michael
Gilbert, Fiona J.
Warburton, Elizabeth A.
Schönlieb, Carola-Bibiane
Sala, Evis
Rudd, James H. F.
author_facet Le, Elizabeth P. V.
Rundo, Leonardo
Tarkin, Jason M.
Evans, Nicholas R.
Chowdhury, Mohammed M.
Coughlin, Patrick A.
Pavey, Holly
Wall, Chris
Zaccagna, Fulvio
Gallagher, Ferdia A.
Huang, Yuan
Sriranjan, Rouchelle
Le, Anthony
Weir-McCall, Jonathan R.
Roberts, Michael
Gilbert, Fiona J.
Warburton, Elizabeth A.
Schönlieb, Carola-Bibiane
Sala, Evis
Rudd, James H. F.
author_sort Le, Elizabeth P. V.
collection PubMed
description Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk.
format Online
Article
Text
id pubmed-7876096
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78760962021-02-11 Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events Le, Elizabeth P. V. Rundo, Leonardo Tarkin, Jason M. Evans, Nicholas R. Chowdhury, Mohammed M. Coughlin, Patrick A. Pavey, Holly Wall, Chris Zaccagna, Fulvio Gallagher, Ferdia A. Huang, Yuan Sriranjan, Rouchelle Le, Anthony Weir-McCall, Jonathan R. Roberts, Michael Gilbert, Fiona J. Warburton, Elizabeth A. Schönlieb, Carola-Bibiane Sala, Evis Rudd, James H. F. Sci Rep Article Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictive models, for good generalisability. We extracted 93 radiomic features from carotid artery computed tomography angiograms of 41 patients with cerebrovascular events. We tested feature robustness to region-of-interest perturbations, image pre-processing settings and quantisation methods using both single- and multi-slice approaches. We assessed the ability of the most robust features to identify culprit and non-culprit arteries using several machine learning algorithms and report the average area under the curve (AUC) from five-fold cross validation. Multi-slice features were superior to single for producing robust radiomic features (67 vs. 61). The optimal image quantisation method used bin widths of 25 or 30. Incorporating our top 10 non-redundant robust radiomics features into ElasticNet achieved an AUC of 0.73 and accuracy of 69% (compared to carotid calcification alone [AUC: 0.44, accuracy: 46%]). Our results provide key information for introducing carotid CT radiomics into clinical practice. If validated prospectively, our robust carotid radiomic set could improve stroke prediction and target therapies to those at highest risk. Nature Publishing Group UK 2021-02-10 /pmc/articles/PMC7876096/ /pubmed/33568735 http://dx.doi.org/10.1038/s41598-021-82760-w Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Le, Elizabeth P. V.
Rundo, Leonardo
Tarkin, Jason M.
Evans, Nicholas R.
Chowdhury, Mohammed M.
Coughlin, Patrick A.
Pavey, Holly
Wall, Chris
Zaccagna, Fulvio
Gallagher, Ferdia A.
Huang, Yuan
Sriranjan, Rouchelle
Le, Anthony
Weir-McCall, Jonathan R.
Roberts, Michael
Gilbert, Fiona J.
Warburton, Elizabeth A.
Schönlieb, Carola-Bibiane
Sala, Evis
Rudd, James H. F.
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_full Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_fullStr Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_full_unstemmed Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_short Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
title_sort assessing robustness of carotid artery ct angiography radiomics in the identification of culprit lesions in cerebrovascular events
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876096/
https://www.ncbi.nlm.nih.gov/pubmed/33568735
http://dx.doi.org/10.1038/s41598-021-82760-w
work_keys_str_mv AT leelizabethpv assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT rundoleonardo assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT tarkinjasonm assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT evansnicholasr assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT chowdhurymohammedm assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT coughlinpatricka assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT paveyholly assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT wallchris assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT zaccagnafulvio assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT gallagherferdiaa assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT huangyuan assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT sriranjanrouchelle assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT leanthony assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT weirmccalljonathanr assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT robertsmichael assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT gilbertfionaj assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT warburtonelizabetha assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT schonliebcarolabibiane assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT salaevis assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents
AT ruddjameshf assessingrobustnessofcarotidarteryctangiographyradiomicsintheidentificationofculpritlesionsincerebrovascularevents