Cargando…
Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events
Radiomics, quantitative feature extraction from radiological images, can improve disease diagnosis and prognostication. However, radiomic features are susceptible to image acquisition and segmentation variability. Ideally, only features robust to these variations would be incorporated into predictiv...
Autores principales: | Le, Elizabeth P. V., Rundo, Leonardo, Tarkin, Jason M., Evans, Nicholas R., Chowdhury, Mohammed M., Coughlin, Patrick A., Pavey, Holly, Wall, Chris, Zaccagna, Fulvio, Gallagher, Ferdia A., Huang, Yuan, Sriranjan, Rouchelle, Le, Anthony, Weir-McCall, Jonathan R., Roberts, Michael, Gilbert, Fiona J., Warburton, Elizabeth A., Schönlieb, Carola-Bibiane, Sala, Evis, Rudd, James H. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876096/ https://www.ncbi.nlm.nih.gov/pubmed/33568735 http://dx.doi.org/10.1038/s41598-021-82760-w |
Ejemplares similares
-
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy
por: Yeung, Michael, et al.
Publicado: (2021) -
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
A pipeline to further enhance quality, integrity and reusability of the NCCID clinical data
por: Breger, Anna, et al.
Publicado: (2023) -
Equivariant neural networks for inverse problems
por: Celledoni, Elena, et al.
Publicado: (2021)