Cargando…
Systematic auditing is essential to debiasing machine learning in biology
Biases in data used to train machine learning (ML) models can inflate their prediction performance and confound our understanding of how and what they learn. Although biases are common in biological data, systematic auditing of ML models to identify and eliminate these biases is not a common practic...
Autores principales: | Eid, Fatma-Elzahraa, Elmarakeby, Haitham A., Chan, Yujia Alina, Fornelos, Nadine, ElHefnawi, Mahmoud, Van Allen, Eliezer M., Heath, Lenwood S., Lage, Kasper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876113/ https://www.ncbi.nlm.nih.gov/pubmed/33568741 http://dx.doi.org/10.1038/s42003-021-01674-5 |
Ejemplares similares
-
Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data
por: Badr, Eman, et al.
Publicado: (2016) -
Cognitive debiasing 1: origins of bias and theory of debiasing
por: Croskerry, Pat, et al.
Publicado: (2013) -
A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis
por: Ni, Ying, et al.
Publicado: (2016) -
Similarity-Based Codes Sequentially Assigned to Ebolavirus Genomes Are Informative of Species Membership, Associated Outbreaks, and Transmission Chains
por: Weisberg, Alexandra J., et al.
Publicado: (2015) -
The Debiased Spatial Whittle likelihood
por: Guillaumin, Arthur P., et al.
Publicado: (2022)