Cargando…

The tight Second Law inequality for coherent quantum systems and finite-size heat baths

In classical thermodynamics, the optimal work is given by the free energy difference, what according to the result of Skrzypczyk et al. can be generalized for individual quantum systems. The saturation of this bound, however, requires an infinite bath and ideal energy storage that is able to extract...

Descripción completa

Detalles Bibliográficos
Autor principal: Łobejko, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876128/
https://www.ncbi.nlm.nih.gov/pubmed/33568672
http://dx.doi.org/10.1038/s41467-021-21140-4
Descripción
Sumario:In classical thermodynamics, the optimal work is given by the free energy difference, what according to the result of Skrzypczyk et al. can be generalized for individual quantum systems. The saturation of this bound, however, requires an infinite bath and ideal energy storage that is able to extract work from coherences. Here we present the tight Second Law inequality, defined in terms of the ergotropy (rather than free energy), that incorporates both of those important microscopic effects – the locked energy in coherences and the locked energy due to the finite-size bath. The former is solely quantified by the so-called control-marginal state, whereas the latter is given by the free energy difference between the global passive state and the equilibrium state. Furthermore, we discuss the thermodynamic limit where the finite-size bath correction vanishes, and the locked energy in coherences takes the form of the entropy difference. We supplement our results by numerical simulations for the heat bath given by the collection of qubits and the Gaussian model of the work reservoir.