Cargando…

Intravenous lidocaine alleviates postherpetic neuralgia in rats via regulation of neuroinflammation of microglia and astrocytes

This study aimed to explore the effects and possible mechanisms of intravenous lidocaine in postherpetic neuralgia (PHN) rats. Mechanical withdrawal thresholds and thermal withdrawal latencies were measured. Open field test, elevated plus maze test, and tail suspension test were used to assess anxie...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Lulin, Li, Juan, Zhou, Junli, Zhang, Dexin, Xiao, Zhi, Yu, Tian, Li, Ying, Cao, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876569/
https://www.ncbi.nlm.nih.gov/pubmed/33604528
http://dx.doi.org/10.1016/j.isci.2021.102108
Descripción
Sumario:This study aimed to explore the effects and possible mechanisms of intravenous lidocaine in postherpetic neuralgia (PHN) rats. Mechanical withdrawal thresholds and thermal withdrawal latencies were measured. Open field test, elevated plus maze test, and tail suspension test were used to assess anxiety- and depressive-like behaviors. Microglia and astrocytes in spinal dorsal horn (SDH), prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampus were analyzed. The expression of TNF-α, IL-1β, and IL-4 in SDH and serum were evaluated. Intravenous lidocaine alleviated mechanical allodynia and thermal hypoalgesia, downregulated the expression of TNF-α and IL-1β, and inhibited the activation of microglia and astrocytes in SDH. In addition, it reduced the activation of astrocyte but not microglia in PFC, ACC, and hippocampus. Intravenous lidocaine may relieve PHN by inhibiting the activation of microglia and astrocyte in SDH or by reducing the neuroinflammation and astrocyte activation in PFC, ACC, and hippocampus.