Cargando…
Perceived Sound Quality Dimensions Influencing Frequency-Gain Shaping Preferences for Hearing Aid-Amplified Speech and Music
Hearing aids are typically fitted using speech-based prescriptive formulae to make speech more intelligible. Individual preferences may vary from these prescriptions and may also vary with signal type. It is important to consider what motivates listener preferences and how those preferences can info...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876583/ https://www.ncbi.nlm.nih.gov/pubmed/33563136 http://dx.doi.org/10.1177/2331216521989900 |
Sumario: | Hearing aids are typically fitted using speech-based prescriptive formulae to make speech more intelligible. Individual preferences may vary from these prescriptions and may also vary with signal type. It is important to consider what motivates listener preferences and how those preferences can inform hearing aid processing so that assistive listening devices can best be tailored for hearing aid users. Therefore, this study explored preferred frequency-gain shaping relative to prescribed gain for speech and music samples. Preferred gain was determined for 22 listeners with mild sloping to moderately severe hearing loss relative to individually prescribed amplification while listening to samples of male speech, female speech, pop music, and classical music across low-, mid-, and high-frequency bands. Samples were amplified using a fast-acting compression hearing aid simulator. Preferences were determined using an adaptive paired comparison procedure. Listeners then rated speech and music samples processed using prescribed and preferred shaping across different sound quality descriptors. On average, low-frequency gain was significantly increased relative to the prescription for all stimuli and most substantially for pop and classical music. High-frequency gain was decreased significantly for pop music and male speech. Gain adjustments, particularly in the mid- and high-frequency bands, varied considerably between listeners. Music preferences were driven by changes in perceived fullness and sharpness, whereas speech preferences were driven by changes in perceived intelligibility and loudness. The results generally support the use of prescribed amplification to optimize speech intelligibility and alternative amplification for music listening for most listeners. |
---|