Cargando…
Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study
BACKGROUND: Statistical methods for modeling longitudinal and time-to-event data has received much attention in medical research and is becoming increasingly useful. In clinical studies, such as cancer and AIDS, longitudinal biomarkers are used to monitor disease progression and to predict survival....
Autores principales: | Ngwa, Julius S., Cabral, Howard J., Cheng, Debbie M., Gagnon, David R., LaValley, Michael P., Cupples, L. Adrienne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876802/ https://www.ncbi.nlm.nih.gov/pubmed/33568059 http://dx.doi.org/10.1186/s12874-021-01207-y |
Ejemplares similares
-
A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study
por: Ngwa, Julius S., et al.
Publicado: (2016) -
Description of the Framingham Heart Study data for Genetic Analysis Workshop 13
por: Cupples, L Adrienne, et al.
Publicado: (2003) -
Consistency of linkage results across exams and methods in the Framingham Heart Study
por: Atwood, Larry D, et al.
Publicado: (2003) -
Genetics Analysis Workshop 16 Problem 2: the Framingham Heart Study data
por: Cupples, L Adrienne, et al.
Publicado: (2009) -
Genome-wide association with diabetes-related traits in the Framingham Heart Study
por: Meigs, James B, et al.
Publicado: (2007)