Cargando…
Excited-State Geometry Optimization of Small Molecules with Many-Body Green’s Functions Theory
[Image: see text] We present a benchmark study of gas phase geometry optimizations in the excited states of carbon monoxide, acetone, acrolein, and methylenecyclopropene using many-body Green’s functions theory within the GW approximation and the Bethe–Salpeter equation (BSE) employing numerical gra...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876808/ https://www.ncbi.nlm.nih.gov/pubmed/33399447 http://dx.doi.org/10.1021/acs.jctc.0c01099 |
_version_ | 1783650042486194176 |
---|---|
author | Çaylak, Onur Baumeier, Björn |
author_facet | Çaylak, Onur Baumeier, Björn |
author_sort | Çaylak, Onur |
collection | PubMed |
description | [Image: see text] We present a benchmark study of gas phase geometry optimizations in the excited states of carbon monoxide, acetone, acrolein, and methylenecyclopropene using many-body Green’s functions theory within the GW approximation and the Bethe–Salpeter equation (BSE) employing numerical gradients. We scrutinize the influence of several typical approximations in the GW-BSE framework; we used one-shot G(0)W(0) or eigenvalue self-consistent evGW, employing a fully analytic approach or plasmon-pole model for the frequency dependence of the electron self-energy, or performing the BSE step within the Tamm–Dancoff approximation. The obtained geometries are compared to reference results from multireference perturbation theory (CASPT2), variational Monte Carlo (VMC) method, second-order approximate coupled cluster (CC2) method, and time-dependent density-functional theory (TDDFT). We find overall a good agreement of the structural parameters optimized with the GW-BSE calculations with CASPT2, with an average relative error of around 1% for the G(0)W(0) and 1.5% for the evGW variants based on a PBE0 ground state, respectively, while the other approximations have negligible influence. The relative errors are also smaller than those for CC2 and TDDFT with different functionals and only larger than VMC, indicating that the GW-BSE method does not only yield excitation energies but also geometries in good agreement with established higher-order wave function methods. |
format | Online Article Text |
id | pubmed-7876808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-78768082021-02-12 Excited-State Geometry Optimization of Small Molecules with Many-Body Green’s Functions Theory Çaylak, Onur Baumeier, Björn J Chem Theory Comput [Image: see text] We present a benchmark study of gas phase geometry optimizations in the excited states of carbon monoxide, acetone, acrolein, and methylenecyclopropene using many-body Green’s functions theory within the GW approximation and the Bethe–Salpeter equation (BSE) employing numerical gradients. We scrutinize the influence of several typical approximations in the GW-BSE framework; we used one-shot G(0)W(0) or eigenvalue self-consistent evGW, employing a fully analytic approach or plasmon-pole model for the frequency dependence of the electron self-energy, or performing the BSE step within the Tamm–Dancoff approximation. The obtained geometries are compared to reference results from multireference perturbation theory (CASPT2), variational Monte Carlo (VMC) method, second-order approximate coupled cluster (CC2) method, and time-dependent density-functional theory (TDDFT). We find overall a good agreement of the structural parameters optimized with the GW-BSE calculations with CASPT2, with an average relative error of around 1% for the G(0)W(0) and 1.5% for the evGW variants based on a PBE0 ground state, respectively, while the other approximations have negligible influence. The relative errors are also smaller than those for CC2 and TDDFT with different functionals and only larger than VMC, indicating that the GW-BSE method does not only yield excitation energies but also geometries in good agreement with established higher-order wave function methods. American Chemical Society 2021-01-05 2021-02-09 /pmc/articles/PMC7876808/ /pubmed/33399447 http://dx.doi.org/10.1021/acs.jctc.0c01099 Text en © 2021 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Çaylak, Onur Baumeier, Björn Excited-State Geometry Optimization of Small Molecules with Many-Body Green’s Functions Theory |
title | Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory |
title_full | Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory |
title_fullStr | Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory |
title_full_unstemmed | Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory |
title_short | Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory |
title_sort | excited-state geometry optimization of small molecules
with many-body green’s functions theory |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876808/ https://www.ncbi.nlm.nih.gov/pubmed/33399447 http://dx.doi.org/10.1021/acs.jctc.0c01099 |
work_keys_str_mv | AT caylakonur excitedstategeometryoptimizationofsmallmoleculeswithmanybodygreensfunctionstheory AT baumeierbjorn excitedstategeometryoptimizationofsmallmoleculeswithmanybodygreensfunctionstheory |