Cargando…
Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via Machine Learning and Rationalizing Structural Features Important for Selectivity
[Image: see text] Carbonic anhydrases (CAs) catalyze the physiological hydration of carbon dioxide and are among the most intensely studied pharmaceutical target enzymes. A hallmark of CA inhibition is the complexation of the catalytic zinc cation in the active site. Human (h) CA isoforms belonging...
Autores principales: | Galati, Salvatore, Yonchev, Dimitar, Rodríguez-Pérez, Raquel, Vogt, Martin, Tuccinardi, Tiziano, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876851/ https://www.ncbi.nlm.nih.gov/pubmed/33585783 http://dx.doi.org/10.1021/acsomega.0c06153 |
Ejemplares similares
-
Development of a cheminformatics platform for selectivity analyses of carbonic anhydrase inhibitors
por: Poli, Giulio, et al.
Publicado: (2019) -
Integrating computational lead optimization diagnostics with analog design and candidate selection
por: Yonchev, Dimitar, et al.
Publicado: (2020) -
From SAR Diagnostics to Compound Design: Development Chronology of the Compound Optimization Monitor (COMO) Method
por: Yonchev, Dimitar, et al.
Publicado: (2020) -
Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning
por: Feldmann, Christian, et al.
Publicado: (2020) -
DeepCOMO: from structure-activity relationship diagnostics to generative molecular design using the compound optimization monitor methodology
por: Yonchev, Dimitar, et al.
Publicado: (2020)