Cargando…
Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species
The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane-enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877005/ https://www.ncbi.nlm.nih.gov/pubmed/33649776 http://dx.doi.org/10.3892/or.2021.7964 |
_version_ | 1783650078988173312 |
---|---|
author | Nakaoka, Ai Nakahana, Makiko Inubushi, Sachiko Akasaka, Hiroaki Salah, Mohammed Fujita, Yoshiko Kubota, Hikaru Hassan, Mennaallah Nishikawa, Ryo Mukumoto, Naritoshi Ishihara, Takeaki Miyawaki, Daisuke Sasayama, Takashi Sasaki, Ryohei |
author_facet | Nakaoka, Ai Nakahana, Makiko Inubushi, Sachiko Akasaka, Hiroaki Salah, Mohammed Fujita, Yoshiko Kubota, Hikaru Hassan, Mennaallah Nishikawa, Ryo Mukumoto, Naritoshi Ishihara, Takeaki Miyawaki, Daisuke Sasayama, Takashi Sasaki, Ryohei |
author_sort | Nakaoka, Ai |
collection | PubMed |
description | The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane-enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including microRNAs (miRNAs or miRs). The present study aimed to identify novel roles of exosomes released from irradiated cells to neighboring cancer cells. In order to confirm the presence of exosomes in the human pancreatic cancer cell line MIAPaCa-2, ultracentrifugation was performed followed by transmission electron microscopy and nanoparticle tracking analysis (NanoSight) using the exosome-specific surface markers CD9 and CD63. Subsequent endocytosis of exosomes was confirmed by fluorescent microscopy. Cell survival following irradiation and the addition of exosomes was evaluated by colony forming assay. Expression levels of miRNAs in exosomes were then quantified by microarray analysis, while protein expression levels of Cu/Zn- and Mn-superoxide dismutase (SOD1 and 2, respectively) enzymes in MIAPaCa-2 cells were evaluated by western blotting. Results showed that the uptake of irradiated exosomes was significantly higher than that of non-irradiated exosomes. Notably, irradiated exosomes induced higher intracellular levels of reactive oxygen species (ROS) and a higher frequency of DNA damage in MIAPaCa-2 cells, as determined by fluorescent microscopy and immunocytochemistry, respectively. Moreover, six up- and five downregulated miRNAs were identified in 5 and 8 Gy-irradiated cells using miRNA microarray analyses. Further analysis using miRNA mimics and reverse transcription-quantitative PCR identified miR-6823-5p as a potential candidate to inhibit SOD1, leading to increased intracellular ROS levels and DNA damage. To the best of our knowledge, the present study is the first to demonstrate that irradiated exosomes enhance the radiation effect via increasing intracellular ROS levels in cancer cells. This contributes to improved understanding of the bystander effect of neighboring cancer cells. |
format | Online Article Text |
id | pubmed-7877005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-78770052021-02-24 Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species Nakaoka, Ai Nakahana, Makiko Inubushi, Sachiko Akasaka, Hiroaki Salah, Mohammed Fujita, Yoshiko Kubota, Hikaru Hassan, Mennaallah Nishikawa, Ryo Mukumoto, Naritoshi Ishihara, Takeaki Miyawaki, Daisuke Sasayama, Takashi Sasaki, Ryohei Oncol Rep Articles The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane-enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including microRNAs (miRNAs or miRs). The present study aimed to identify novel roles of exosomes released from irradiated cells to neighboring cancer cells. In order to confirm the presence of exosomes in the human pancreatic cancer cell line MIAPaCa-2, ultracentrifugation was performed followed by transmission electron microscopy and nanoparticle tracking analysis (NanoSight) using the exosome-specific surface markers CD9 and CD63. Subsequent endocytosis of exosomes was confirmed by fluorescent microscopy. Cell survival following irradiation and the addition of exosomes was evaluated by colony forming assay. Expression levels of miRNAs in exosomes were then quantified by microarray analysis, while protein expression levels of Cu/Zn- and Mn-superoxide dismutase (SOD1 and 2, respectively) enzymes in MIAPaCa-2 cells were evaluated by western blotting. Results showed that the uptake of irradiated exosomes was significantly higher than that of non-irradiated exosomes. Notably, irradiated exosomes induced higher intracellular levels of reactive oxygen species (ROS) and a higher frequency of DNA damage in MIAPaCa-2 cells, as determined by fluorescent microscopy and immunocytochemistry, respectively. Moreover, six up- and five downregulated miRNAs were identified in 5 and 8 Gy-irradiated cells using miRNA microarray analyses. Further analysis using miRNA mimics and reverse transcription-quantitative PCR identified miR-6823-5p as a potential candidate to inhibit SOD1, leading to increased intracellular ROS levels and DNA damage. To the best of our knowledge, the present study is the first to demonstrate that irradiated exosomes enhance the radiation effect via increasing intracellular ROS levels in cancer cells. This contributes to improved understanding of the bystander effect of neighboring cancer cells. D.A. Spandidos 2021-04 2021-02-02 /pmc/articles/PMC7877005/ /pubmed/33649776 http://dx.doi.org/10.3892/or.2021.7964 Text en Copyright: © Nakaoka et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Nakaoka, Ai Nakahana, Makiko Inubushi, Sachiko Akasaka, Hiroaki Salah, Mohammed Fujita, Yoshiko Kubota, Hikaru Hassan, Mennaallah Nishikawa, Ryo Mukumoto, Naritoshi Ishihara, Takeaki Miyawaki, Daisuke Sasayama, Takashi Sasaki, Ryohei Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title | Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title_full | Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title_fullStr | Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title_full_unstemmed | Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title_short | Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
title_sort | exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877005/ https://www.ncbi.nlm.nih.gov/pubmed/33649776 http://dx.doi.org/10.3892/or.2021.7964 |
work_keys_str_mv | AT nakaokaai exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT nakahanamakiko exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT inubushisachiko exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT akasakahiroaki exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT salahmohammed exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT fujitayoshiko exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT kubotahikaru exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT hassanmennaallah exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT nishikawaryo exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT mukumotonaritoshi exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT ishiharatakeaki exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT miyawakidaisuke exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT sasayamatakashi exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies AT sasakiryohei exosomemediatedradiosensitizingeffectonneighboringcancercellsviaincreaseinintracellularlevelsofreactiveoxygenspecies |