Cargando…
Ranking cancer drivers via betweenness-based outlier detection and random walks
BACKGROUND: Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. RESULTS: We propose BetweenNet, a computational approach that integrates genomic data with a protei...
Autores principales: | Erten, Cesim, Houdjedj, Aissa, Kazan, Hilal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877041/ https://www.ncbi.nlm.nih.gov/pubmed/33568049 http://dx.doi.org/10.1186/s12859-021-03989-w |
Ejemplares similares
-
A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers
por: Ahmed, Rafsan, et al.
Publicado: (2021) -
DriveWays: a method for identifying possibly overlapping driver pathways in cancer
por: Baali, Ilyes, et al.
Publicado: (2020) -
Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes
por: Dopazo, Joaquin, et al.
Publicado: (2017) -
LSOSS: Detection of Cancer Outlier Differential Gene Expression
por: Wang, Yupeng, et al.
Publicado: (2010) -
CLOUD: a non-parametric detection test for microbiome outliers
por: Montassier, Emmanuel, et al.
Publicado: (2018)