Cargando…
Results and Prospects of Using Activator of Hematopoietic Stem Cell Differentiation in Complex Therapy for Patients with COVID-19
The paper presents the results of a standard and complex treatment method using the peptide drug thymus thymalin in patients with COVID-19. One of the mechanisms of the immunomodulatory effect of thymalin is considered to be the ability of this peptide drug to influence the differentiation of human...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877506/ https://www.ncbi.nlm.nih.gov/pubmed/33575961 http://dx.doi.org/10.1007/s12015-020-10087-6 |
Sumario: | The paper presents the results of a standard and complex treatment method using the peptide drug thymus thymalin in patients with COVID-19. One of the mechanisms of the immunomodulatory effect of thymalin is considered to be the ability of this peptide drug to influence the differentiation of human hematopoietic stem cells (HSCs). It was found that, as a result of standard treatment, patients in the control group showed a decrease in the concentration of the pro-inflammatory cytokine IL-6, C-reactive protein, D-dimer. The addition of thymalin to standard therapy accelerated the decline in both these indicators and the indicators of the T cell system. This has helped reduce the risk of blood clots in COVID-19 patients. The revealed properties of the thymus peptide preparation are the rationale for its inclusion in the complex treatment of coronavirus infection. GRAPHICAL ABSTRACT: Peptideswith potential biological activity against SARS-CoV-2 virus [29]. Note: Nitrogen atoms are shown in blue, oxygen atoms - in red, carbon atoms – in gray, hydrogen atoms – in white, and phosphorus atoms – in yellow [Image: see text] |
---|