Cargando…
Multifidelity computing for coupling full and reduced order models
Hybrid physics-machine learning models are increasingly being used in simulations of transport processes. Many complex multiphysics systems relevant to scientific and engineering applications include multiple spatiotemporal scales and comprise a multifidelity problem sharing an interface between var...
Autores principales: | Ahmed, Shady E., San, Omer, Kara, Kursat, Younis, Rami, Rasheed, Adil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877632/ https://www.ncbi.nlm.nih.gov/pubmed/33571229 http://dx.doi.org/10.1371/journal.pone.0246092 |
Ejemplares similares
-
Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems
por: Pienaar, Elsje
Publicado: (2018) -
Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems
por: San, Omer, et al.
Publicado: (2022) -
Calibrating DFT Formation
Enthalpy Calculations by
Multifidelity Machine Learning
por: Gong, Sheng, et al.
Publicado: (2022) -
Multifidelity Model Calibration in Structural Dynamics Using Stochastic Variational Inference on Manifolds
por: Tsilifis, Panagiotis, et al.
Publicado: (2022) -
A multifidelity approach coupling parameter space reduction and nonintrusive POD with application to structural optimization of passenger ship hulls
por: Tezzele, Marco, et al.
Publicado: (2022)