Cargando…
A mixture model to detect edges in sparse co-expression graphs with an application for comparing breast cancer subtypes
We develop a method to recover a gene network’s structure from co-expression data, measured in terms of normalized Pearson’s correlation coefficients between gene pairs. We treat these co-expression measurements as weights in the complete graph in which nodes correspond to genes. To decide which edg...
Autores principales: | Bar, Haim, Bang, Seojin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877669/ https://www.ncbi.nlm.nih.gov/pubmed/33571253 http://dx.doi.org/10.1371/journal.pone.0246945 |
Ejemplares similares
-
Ordering a Sparse Graph to Minimize the Sum of Right Ends of Edges
por: Damaschke, Peter
Publicado: (2020) -
Infinite mixture-of-experts model for sparse survival regression with application to breast cancer
por: Raman, Sudhir, et al.
Publicado: (2010) -
A Sparse Mixture-of-Experts Model With Screening of Genetic Associations to Guide Disease Subtyping
por: Courbariaux, Marie, et al.
Publicado: (2022) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Graph theory and sparse matrix computation
por: George, Alan, et al.
Publicado: (1993)