Cargando…
Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans
Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals rang...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877767/ https://www.ncbi.nlm.nih.gov/pubmed/33524034 http://dx.doi.org/10.1371/journal.pgen.1009346 |
_version_ | 1783650235076050944 |
---|---|
author | Pandey, Pratima Singh, Anuradha Kaur, Harjot Ghosh-Roy, Anindya Babu, Kavita |
author_facet | Pandey, Pratima Singh, Anuradha Kaur, Harjot Ghosh-Roy, Anindya Babu, Kavita |
author_sort | Pandey, Pratima |
collection | PubMed |
description | Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12. |
format | Online Article Text |
id | pubmed-7877767 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78777672021-02-19 Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans Pandey, Pratima Singh, Anuradha Kaur, Harjot Ghosh-Roy, Anindya Babu, Kavita PLoS Genet Research Article Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12. Public Library of Science 2021-02-01 /pmc/articles/PMC7877767/ /pubmed/33524034 http://dx.doi.org/10.1371/journal.pgen.1009346 Text en © 2021 Pandey et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pandey, Pratima Singh, Anuradha Kaur, Harjot Ghosh-Roy, Anindya Babu, Kavita Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title | Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title_full | Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title_fullStr | Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title_full_unstemmed | Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title_short | Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans |
title_sort | increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in caenorhabditis elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877767/ https://www.ncbi.nlm.nih.gov/pubmed/33524034 http://dx.doi.org/10.1371/journal.pgen.1009346 |
work_keys_str_mv | AT pandeypratima increaseddopaminergicneurotransmissionresultsinethanoldependentsedativebehaviorsincaenorhabditiselegans AT singhanuradha increaseddopaminergicneurotransmissionresultsinethanoldependentsedativebehaviorsincaenorhabditiselegans AT kaurharjot increaseddopaminergicneurotransmissionresultsinethanoldependentsedativebehaviorsincaenorhabditiselegans AT ghoshroyanindya increaseddopaminergicneurotransmissionresultsinethanoldependentsedativebehaviorsincaenorhabditiselegans AT babukavita increaseddopaminergicneurotransmissionresultsinethanoldependentsedativebehaviorsincaenorhabditiselegans |