Cargando…
Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production
Anthocyanins from the petals of Hibiscus syriacus L. (PS) possess anti-inflammatory, antioxidant, and antimelanogenic activities. However, it remains unclear whether PS inhibit the NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation and assembly. This study is aimed at investigating...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878077/ https://www.ncbi.nlm.nih.gov/pubmed/33613822 http://dx.doi.org/10.1155/2021/1246491 |
_version_ | 1783650284579323904 |
---|---|
author | Molagoda, Ilandarage Menu Neelaka Lee, Kyoung Tae Choi, Yung Hyun Jayasingha, Jayasingha Arachchige Chathuranga Chanaka Kim, Gi-Young |
author_facet | Molagoda, Ilandarage Menu Neelaka Lee, Kyoung Tae Choi, Yung Hyun Jayasingha, Jayasingha Arachchige Chathuranga Chanaka Kim, Gi-Young |
author_sort | Molagoda, Ilandarage Menu Neelaka |
collection | PubMed |
description | Anthocyanins from the petals of Hibiscus syriacus L. (PS) possess anti-inflammatory, antioxidant, and antimelanogenic activities. However, it remains unclear whether PS inhibit the NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation and assembly. This study is aimed at investigating whether PS downregulate NLRP3-mediated inflammasome by inhibiting nuclear factor-κB (NF-κB) and endoplasmic reticulum (ER) stress. BV2 microglia cells were treated with PS in the presence of lipopolysaccharide and adenosine triphosphate (LPS/ATP), and the NLRP3-related signaling pathway was investigated. In this study, we found that LPS/ATP treatment activated the NLRP3 inflammasome, which resulted in the release of interleukin-1β (IL-1β) and IL-18. Meanwhile, PS reduced LPS/ATP-mediated NLRP3 inflammasome at 12 h by inhibiting ER stress-mediated Ca(2+) accumulation and subsequent mitochondrial reactive oxygen species (mtROS) production, which, in turn, decreased IL-1β and IL-18 release. Furthermore, PS inhibited the NLRP3 inflammasome 1 h after LPS/ATP treatment by suppressing the NF-κB pathway, which downregulated Ca(2+) accumulation and mtROS production. These data showed that PS negatively regulated activation of the NLRP3 inflammasome in a time-different manner by inhibiting the NF-κB signaling pathway in the early stage and the ER stress response in the late stage. The pathways shared Ca(2+) accumulation-mediated mtROS production, which was significantly inhibited in the presence of PS. In conclusion, our results suggested that PS has potential as a supplement against NLRP3 inflammasome-related inflammatory disorders; nevertheless, further studies are needed to determine the effect of PS in the noncanonical NLRP3 inflammasome pathways and pathological conditions in vivo. |
format | Online Article Text |
id | pubmed-7878077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-78780772021-02-19 Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production Molagoda, Ilandarage Menu Neelaka Lee, Kyoung Tae Choi, Yung Hyun Jayasingha, Jayasingha Arachchige Chathuranga Chanaka Kim, Gi-Young Oxid Med Cell Longev Research Article Anthocyanins from the petals of Hibiscus syriacus L. (PS) possess anti-inflammatory, antioxidant, and antimelanogenic activities. However, it remains unclear whether PS inhibit the NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation and assembly. This study is aimed at investigating whether PS downregulate NLRP3-mediated inflammasome by inhibiting nuclear factor-κB (NF-κB) and endoplasmic reticulum (ER) stress. BV2 microglia cells were treated with PS in the presence of lipopolysaccharide and adenosine triphosphate (LPS/ATP), and the NLRP3-related signaling pathway was investigated. In this study, we found that LPS/ATP treatment activated the NLRP3 inflammasome, which resulted in the release of interleukin-1β (IL-1β) and IL-18. Meanwhile, PS reduced LPS/ATP-mediated NLRP3 inflammasome at 12 h by inhibiting ER stress-mediated Ca(2+) accumulation and subsequent mitochondrial reactive oxygen species (mtROS) production, which, in turn, decreased IL-1β and IL-18 release. Furthermore, PS inhibited the NLRP3 inflammasome 1 h after LPS/ATP treatment by suppressing the NF-κB pathway, which downregulated Ca(2+) accumulation and mtROS production. These data showed that PS negatively regulated activation of the NLRP3 inflammasome in a time-different manner by inhibiting the NF-κB signaling pathway in the early stage and the ER stress response in the late stage. The pathways shared Ca(2+) accumulation-mediated mtROS production, which was significantly inhibited in the presence of PS. In conclusion, our results suggested that PS has potential as a supplement against NLRP3 inflammasome-related inflammatory disorders; nevertheless, further studies are needed to determine the effect of PS in the noncanonical NLRP3 inflammasome pathways and pathological conditions in vivo. Hindawi 2021-02-04 /pmc/articles/PMC7878077/ /pubmed/33613822 http://dx.doi.org/10.1155/2021/1246491 Text en Copyright © 2021 Ilandarage Menu Neelaka Molagoda et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Molagoda, Ilandarage Menu Neelaka Lee, Kyoung Tae Choi, Yung Hyun Jayasingha, Jayasingha Arachchige Chathuranga Chanaka Kim, Gi-Young Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title | Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title_full | Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title_fullStr | Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title_full_unstemmed | Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title_short | Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF-κB- and ER Stress-Induced Ca(2+) Accumulation and Mitochondrial ROS Production |
title_sort | anthocyanins from hibiscus syriacus l. inhibit nlrp3 inflammasome in bv2 microglia cells by alleviating nf-κb- and er stress-induced ca(2+) accumulation and mitochondrial ros production |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878077/ https://www.ncbi.nlm.nih.gov/pubmed/33613822 http://dx.doi.org/10.1155/2021/1246491 |
work_keys_str_mv | AT molagodailandaragemenuneelaka anthocyaninsfromhibiscussyriacuslinhibitnlrp3inflammasomeinbv2microgliacellsbyalleviatingnfkbanderstressinducedca2accumulationandmitochondrialrosproduction AT leekyoungtae anthocyaninsfromhibiscussyriacuslinhibitnlrp3inflammasomeinbv2microgliacellsbyalleviatingnfkbanderstressinducedca2accumulationandmitochondrialrosproduction AT choiyunghyun anthocyaninsfromhibiscussyriacuslinhibitnlrp3inflammasomeinbv2microgliacellsbyalleviatingnfkbanderstressinducedca2accumulationandmitochondrialrosproduction AT jayasinghajayasinghaarachchigechathurangachanaka anthocyaninsfromhibiscussyriacuslinhibitnlrp3inflammasomeinbv2microgliacellsbyalleviatingnfkbanderstressinducedca2accumulationandmitochondrialrosproduction AT kimgiyoung anthocyaninsfromhibiscussyriacuslinhibitnlrp3inflammasomeinbv2microgliacellsbyalleviatingnfkbanderstressinducedca2accumulationandmitochondrialrosproduction |