Cargando…
Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13
ABSTRACT: We have produced a 5-year mean secular variation (SV) of the geomagnetic field for the period 2020–2025. We use the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the NASA Goddard geodynamo model and ensemble Kalman filter (EnKF) with 400 ensemble members. Geomagnetic...
Autores principales: | Tangborn, Andrew, Kuang, Weijia, Sabaka, Terence J., Yi, Ce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878246/ https://www.ncbi.nlm.nih.gov/pubmed/33628082 http://dx.doi.org/10.1186/s40623-020-01324-w |
Ejemplares similares
-
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
Building a Better Forecast: Reformulating the Ensemble Kalman Filter for Improved Applications to Volcano Deformation
por: Albright, J. A., et al.
Publicado: (2023) -
Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method
por: Ge, Zhilei, et al.
Publicado: (2017) -
An application of the ensemble Kalman filter in epidemiological modelling
por: Lal, Rajnesh, et al.
Publicado: (2021) -
Forecasting, structural time series models and the Kalman filter
por: Harvey, Andrew C
Publicado: (1990)