Cargando…

The earth’s gravity field recovery using the third invariant of the gravity gradient tensor from GOCE

Due to the independence of the gradiometer instrument’s orientation in space, the second invariant [Formula: see text] of gravity gradients in combination with individual gravity gradients are demonstrated to be valid for gravity field determination. In this contribution, we develop a novel gravity...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Lin, Wan, Xiaoyun, Hsu, Houtse, Ran, Jiangjun, Meng, Xiangchao, Luo, Zhicai, Zhou, Zebing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878776/
https://www.ncbi.nlm.nih.gov/pubmed/33574343
http://dx.doi.org/10.1038/s41598-021-81840-1
Descripción
Sumario:Due to the independence of the gradiometer instrument’s orientation in space, the second invariant [Formula: see text] of gravity gradients in combination with individual gravity gradients are demonstrated to be valid for gravity field determination. In this contribution, we develop a novel gravity field model named I3GG, which is built mainly based on three novel elements: (1) proposing to utilize the third invariant [Formula: see text] of the gravity field and steady-state ocean circulation explorer (GOCE) gravity gradient tensor, instead of using the [Formula: see text] , similar to the previous studies; (2) applying an alternative two-dimensional fast fourier transform (2D FFT) method; (3) showing the advantages of [Formula: see text] over [Formula: see text] in the effect of measurement noise from the theoretical and practical computations. For the purpose of implementing the linearization of the third invariant, this study employs the theory of boundary value problems with sphere approximation at an accuracy level of [Formula: see text] . In order to efficiently solve the boundary value problems, we proposed an alternative method of 2D FFT, which uses the coherent sampling theory to obtain the relationship between the 2D FFT and the third invariant measurements and uses the pseudo-inverse via QR factorization to transform the 2D Fourier coefficients to spherical harmonic ones. Based on the GOCE gravity gradient data of the nominal mission phase, a novel global gravity field model (I3GG) is derived up to maximum degree/order 240, corresponding to a spatial resolution of 83 km at the equator. Moreover, in order to investigate the differences of gravity field determination between [Formula: see text] with [Formula: see text] , we applied the same processing strategy on the second invariant measurements of the GOCE mission and we obtained another gravity field model (I2GG) with a maximum degree of 220, which is 20 degrees lower than that of I3GG. The root-mean-square (RMS) values of geoid differences indicates that the effects of measurement noise of I3GG is about 20% lower than that on I2GG when compared to the gravity field model EGM2008 (Earth Gravitational Model 2008) or EIGEN-5C (EIGEN: European Improved Gravity model of the Earth by New techniques). Then the accuracy of I3GG is evaluated independently by comparison the RMS differences between Global Navigation Satellite System (GNSS)/leveling data and the model-derived geoid heights. Meanwhile, the re-calibrated GOCE data released in 2018 is also dealt with and the corresponding result also shows the similar characteristics.