Cargando…

The Zoltar forecast archive, a tool to standardize and store interdisciplinary prediction research

Forecasting has emerged as an important component of informed, data-driven decision-making in a wide array of fields. We introduce a new data model for probabilistic predictions that encompasses a wide range of forecasting settings. This framework clearly defines the constituent parts of a probabili...

Descripción completa

Detalles Bibliográficos
Autores principales: Reich, Nicholas G., Cornell, Matthew, Ray, Evan L., House, Katie, Le, Khoa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878896/
https://www.ncbi.nlm.nih.gov/pubmed/33574342
http://dx.doi.org/10.1038/s41597-021-00839-5
Descripción
Sumario:Forecasting has emerged as an important component of informed, data-driven decision-making in a wide array of fields. We introduce a new data model for probabilistic predictions that encompasses a wide range of forecasting settings. This framework clearly defines the constituent parts of a probabilistic forecast and proposes one approach for representing these data elements. The data model is implemented in Zoltar, a new software application that stores forecasts using the data model and provides standardized API access to the data. In one real-time case study, an instance of the Zoltar web application was used to store, provide access to, and evaluate real-time forecast data on the order of 10(8) rows, provided by over 40 international research teams from academia and industry making forecasts of the COVID-19 outbreak in the US. Tools and data infrastructure for probabilistic forecasts, such as those introduced here, will play an increasingly important role in ensuring that future forecasting research adheres to a strict set of rigorous and reproducible standards.