Cargando…
Conservation machine learning: a case study of random forests
Conservation machine learning conserves models across runs, users, and experiments—and puts them to good use. We have previously shown the merit of this idea through a small-scale preliminary experiment, involving a single dataset source, 10 datasets, and a single so-called cultivation method—used t...
Autores principales: | Sipper, Moshe, Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878914/ https://www.ncbi.nlm.nih.gov/pubmed/33574563 http://dx.doi.org/10.1038/s41598-021-83247-4 |
Ejemplares similares
-
Conservation machine learning
por: Sipper, Moshe, et al.
Publicado: (2020) -
Artificial intelligence: more human with human
por: Sipper, Moshe, et al.
Publicado: (2017) -
Evolutionary computation: the next major transition of artificial intelligence?
por: Sipper, Moshe, et al.
Publicado: (2017) -
To know the objective is not (necessarily) to know the objective function
por: Sipper, Moshe, et al.
Publicado: (2018) -
Investigating the parameter space of evolutionary algorithms
por: Sipper, Moshe, et al.
Publicado: (2018)