Cargando…

Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer

BACKGROUND: After curative treatment of primary non–small-cell lung cancer (NSCLC), patients undergo intensive surveillance with the aim to detect recurrences from the primary tumor or metachronous second primary lung cancer as early as possible and improve overall survival. However, the benefit of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolff, Henri B., Alberts, Leonie, Kastelijn, Elisabeth A., El Sharouni, Sherif Y., Schramel, Franz M. N. H., Coupé, Veerle M. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879224/
https://www.ncbi.nlm.nih.gov/pubmed/33319646
http://dx.doi.org/10.1177/0272989X20978167
_version_ 1783650487905550336
author Wolff, Henri B.
Alberts, Leonie
Kastelijn, Elisabeth A.
El Sharouni, Sherif Y.
Schramel, Franz M. N. H.
Coupé, Veerle M. H.
author_facet Wolff, Henri B.
Alberts, Leonie
Kastelijn, Elisabeth A.
El Sharouni, Sherif Y.
Schramel, Franz M. N. H.
Coupé, Veerle M. H.
author_sort Wolff, Henri B.
collection PubMed
description BACKGROUND: After curative treatment of primary non–small-cell lung cancer (NSCLC), patients undergo intensive surveillance with the aim to detect recurrences from the primary tumor or metachronous second primary lung cancer as early as possible and improve overall survival. However, the benefit of surveillance is debated. Available evidence is of low quality and conflicting. Microsimulation modeling facilitates the exploration of the impact of different surveillance strategies and provides insight into the cost-effectiveness of surveillance. METHODS: A microsimulation model was used to simulate a range of computed tomography (CT)–based surveillance schedules, differing in the frequency and duration of CT surveillance. The impact on survival, quality-adjusted life-years, costs, and cost-effectiveness of each schedule was assessed. RESULTS: Ten of 108 strategies formed the cost-effectiveness frontier; that is, these were the strategies with the optimal cost-health benefit balance. Per person, the discounted QALYs of these strategies varied between 5.72 and 5.81 y, and discounted costs varied between €9892 and €19,259. Below a willingness-to-pay threshold of €50,000/QALY, no scanning is the preferred option. For a willingness-to-pay threshold of €80,000/QALY, surveillance scanning every 2 y starting 1 y after curative treatment becomes the best option, with €11,860 discounted costs and 5.76 discounted QALYs per person. The European Society for Medical Oncology guideline strategy was more expensive and less effective than several other strategies. CONCLUSION: Model simulations suggest that limited CT surveillance scanning after the treatment of primary NSCLC is cost-effective, but the incremental health-benefit remains marginal. However, model simulations do suggest that the guideline strategy is not cost-effective.
format Online
Article
Text
id pubmed-7879224
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-78792242021-02-22 Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer Wolff, Henri B. Alberts, Leonie Kastelijn, Elisabeth A. El Sharouni, Sherif Y. Schramel, Franz M. N. H. Coupé, Veerle M. H. Med Decis Making Original Articles BACKGROUND: After curative treatment of primary non–small-cell lung cancer (NSCLC), patients undergo intensive surveillance with the aim to detect recurrences from the primary tumor or metachronous second primary lung cancer as early as possible and improve overall survival. However, the benefit of surveillance is debated. Available evidence is of low quality and conflicting. Microsimulation modeling facilitates the exploration of the impact of different surveillance strategies and provides insight into the cost-effectiveness of surveillance. METHODS: A microsimulation model was used to simulate a range of computed tomography (CT)–based surveillance schedules, differing in the frequency and duration of CT surveillance. The impact on survival, quality-adjusted life-years, costs, and cost-effectiveness of each schedule was assessed. RESULTS: Ten of 108 strategies formed the cost-effectiveness frontier; that is, these were the strategies with the optimal cost-health benefit balance. Per person, the discounted QALYs of these strategies varied between 5.72 and 5.81 y, and discounted costs varied between €9892 and €19,259. Below a willingness-to-pay threshold of €50,000/QALY, no scanning is the preferred option. For a willingness-to-pay threshold of €80,000/QALY, surveillance scanning every 2 y starting 1 y after curative treatment becomes the best option, with €11,860 discounted costs and 5.76 discounted QALYs per person. The European Society for Medical Oncology guideline strategy was more expensive and less effective than several other strategies. CONCLUSION: Model simulations suggest that limited CT surveillance scanning after the treatment of primary NSCLC is cost-effective, but the incremental health-benefit remains marginal. However, model simulations do suggest that the guideline strategy is not cost-effective. SAGE Publications 2020-12-15 2021-02 /pmc/articles/PMC7879224/ /pubmed/33319646 http://dx.doi.org/10.1177/0272989X20978167 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Articles
Wolff, Henri B.
Alberts, Leonie
Kastelijn, Elisabeth A.
El Sharouni, Sherif Y.
Schramel, Franz M. N. H.
Coupé, Veerle M. H.
Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title_full Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title_fullStr Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title_full_unstemmed Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title_short Cost-Effectiveness of Surveillance Scanning Strategies after Curative Treatment of Non–Small-Cell Lung Cancer
title_sort cost-effectiveness of surveillance scanning strategies after curative treatment of non–small-cell lung cancer
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879224/
https://www.ncbi.nlm.nih.gov/pubmed/33319646
http://dx.doi.org/10.1177/0272989X20978167
work_keys_str_mv AT wolffhenrib costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer
AT albertsleonie costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer
AT kastelijnelisabetha costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer
AT elsharounisherify costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer
AT schramelfranzmnh costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer
AT coupeveerlemh costeffectivenessofsurveillancescanningstrategiesaftercurativetreatmentofnonsmallcelllungcancer