Cargando…
Fast and Accurate Detection of COVID-19 Along With 14 Other Chest Pathologies Using a Multi-Level Classification: Algorithm Development and Validation Study
BACKGROUND: COVID-19 has spread very rapidly, and it is important to build a system that can detect it in order to help an overwhelmed health care system. Many research studies on chest diseases rely on the strengths of deep learning techniques. Although some of these studies used state-of-the-art t...
Autores principales: | Albahli, Saleh, Yar, Ghulam Nabi Ahmad Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879720/ https://www.ncbi.nlm.nih.gov/pubmed/33529154 http://dx.doi.org/10.2196/23693 |
Ejemplares similares
-
AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays
por: Albahli, Saleh, et al.
Publicado: (2021) -
AI-CenterNet CXR: An artificial intelligence (AI) enabled system for localization and classification of chest X-ray disease
por: Albahli, Saleh, et al.
Publicado: (2022) -
Efficient GAN-based Chest Radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia
por: Albahli, Saleh
Publicado: (2020) -
Efficient attention-based CNN network (EANet) for multi-class maize crop disease classification
por: Albahli, Saleh, et al.
Publicado: (2022) -
Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms
por: Albahli, Saleh, et al.
Publicado: (2020)