Cargando…
A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation
BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk for deterioration. Given the complexity of COVID-19...
Autores principales: | Bolourani, Siavash, Brenner, Max, Wang, Ping, McGinn, Thomas, Hirsch, Jamie S, Barnaby, Douglas, Zanos, Theodoros P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879728/ https://www.ncbi.nlm.nih.gov/pubmed/33476281 http://dx.doi.org/10.2196/24246 |
Ejemplares similares
-
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Tóth, Viktor, et al.
Publicado: (2020) -
The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis
por: Bolourani, Siavash, et al.
Publicado: (2021) -
Predictors of acute admission of more than 48 hours duration
por: Aabel, Erlend, et al.
Publicado: (2013) -
Extracellular CIRP Induces an Inflammatory Phenotype in Pulmonary Fibroblasts via TLR4
por: Bolourani, Siavash, et al.
Publicado: (2021) -
The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice
por: Bolourani, Siavash, et al.
Publicado: (2022)