Cargando…
Real-world applications of deep convolutional neural networks in diagnostic cancer imaging
Autores principales: | Elhalawani, Hesham, Yang, Pei, Abazeed, Mohamed, Shah, Chirag, Mohamed, Abdallah S. R., Thomas, Charles R., Fuller, Clifton D., Thompson, Reid F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880057/ https://www.ncbi.nlm.nih.gov/pubmed/32036673 http://dx.doi.org/10.21037/cco.2020.01.02 |
Ejemplares similares
-
Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review
por: Jethanandani, Amit, et al.
Publicado: (2018) -
Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer
por: Liu, Rongjie, et al.
Publicado: (2019) -
Clustering of Largely Right-Censored Oropharyngeal Head and Neck Cancer Patients for Discriminative Groupings to Improve Outcome Prediction
por: Tosado, Joel, et al.
Publicado: (2020) -
Real-world use of a deep convolutional neural network to assist in the diagnosis of pyoderma gangrenosum
por: Hodson, Emma L., et al.
Publicado: (2023) -
A predictive model of radiation-related fibrosis based on the radiomic features of magnetic resonance imaging and computed tomography
por: Wang, Jian, et al.
Publicado: (2020)