Cargando…

Remotely delivered environmental enrichment intervention for traumatic brain injury: Study protocol for a randomised controlled trial

INTRODUCTION: Individuals with moderate-severe traumatic brain injury (m-sTBI) experience progressive brain and behavioural declines in the chronic stages of injury. Longitudinal studies found that a majority of patients with m-sTBI exhibit significant hippocampal atrophy from 5 to 12 months post-in...

Descripción completa

Detalles Bibliográficos
Autores principales: Belchev, Zorry, Boulos, Mary Ellene, Rybkina, Julia, Johns, Kadeen, Jeffay, Eliyas, Colella, Brenda, Ozubko, Jason, Bray, Michael Johnathan Charles, Di Genova, Nicholas, Levi, Adina, Changoor, Alana, Worthington, Thomas, Gilboa, Asaf, Green, Robin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880099/
https://www.ncbi.nlm.nih.gov/pubmed/33574141
http://dx.doi.org/10.1136/bmjopen-2020-039767
Descripción
Sumario:INTRODUCTION: Individuals with moderate-severe traumatic brain injury (m-sTBI) experience progressive brain and behavioural declines in the chronic stages of injury. Longitudinal studies found that a majority of patients with m-sTBI exhibit significant hippocampal atrophy from 5 to 12 months post-injury, associated with decreased cognitive environmental enrichment (EE). Encouragingly, engaging in EE has been shown to lead to neural improvements, suggesting it is a promising avenue for offsetting hippocampal neurodegeneration in m-sTBI. Allocentric spatial navigation (ie, flexible, bird’s eye view approach), is a good candidate for EE in m-sTBI because it is associated with hippocampal activation and reduced ageing-related volume loss. Efficacy of EE requires intensive daily training, prohibitive within most current health delivery systems. The present protocol is a novel, remotely delivered and self-administered intervention designed to harness principles from EE and allocentric spatial navigation to offset hippocampal atrophy and potentially improve hippocampal functions such as navigation and memory for patients with m-sTBI. METHODS AND ANALYSIS: Eighty-four participants with chronic m-sTBI are being recruited from an urban rehabilitation hospital and randomised into a 16-week intervention (5 hours/week; total: 80 hours) of either targeted spatial navigation or an active control group. The spatial navigation group engages in structured exploration of different cities using Google Street View that includes daily navigation challenges. The active control group watches and answers subjective questions about educational videos. Following a brief orientation, participants remotely self-administer the intervention on their home computer. In addition to feasibility and compliance measures, clinical and experimental cognitive measures as well as MRI scan data are collected pre-intervention and post-intervention to determine behavioural and neural efficacy. ETHICS AND DISSEMINATION: Ethics approval has been obtained from ethics boards at the University Health Network and University of Toronto. Findings will be presented at academic conferences and submitted to peer-reviewed journals. TRIAL REGISTRATION NUMBER: Version 3, ClinicalTrials.gov Registry (NCT04331392).