Cargando…

Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell

BACKGROUND: Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bior...

Descripción completa

Detalles Bibliográficos
Autores principales: Gobin, Jonathan, Muradia, Gauri, Mehic, Jelica, Westwood, Carole, Couvrette, Lauren, Stalker, Andrew, Bigelow, Stewart, Luebbert, Christian C., Bissonnette, Frédéric St-Denis, Johnston, Michael J. W., Sauvé, Simon, Tam, Roger Y., Wang, Lisheng, Rosu-Myles, Michael, Lavoie, Jessie R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880218/
https://www.ncbi.nlm.nih.gov/pubmed/33579358
http://dx.doi.org/10.1186/s13287-021-02190-3
Descripción
Sumario:BACKGROUND: Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bioreactor production systems may be a more amenable alternative than conventional EV production methods for manufacturing products for therapeutic use in humans. METHODS: To characterize the potential utility of these systems, EVs from four hBM-MSC donors were produced independently using a hollow-fiber bioreactor system under a cGMP-compliant procedure. EVs were harvested and characterized for size, concentration, immunophenotype, and glycan profile at three separate intervals throughout a 25-day period. RESULTS: Bioreactor-inoculated hBM-MSCs maintained high viability and retained their trilineage mesoderm differentiation capability while still expressing MSC-associated markers upon retrieval. EVs collected from the four hBM-MSC donors showed consistency in size and concentration in addition to presenting a consistent surface glycan profile. EV surface immunophenotypic analyses revealed a consistent low immunogenicity profile in addition to the presence of immuno-regulatory CD40 antigen. EV cargo analysis for biomarkers of immune regulation showed a high abundance of immuno-regulatory and angiogenic factors VEGF-A and IL-8. CONCLUSIONS: Significantly, EVs from hBM-MSCs with immuno-regulatory constituents were generated in a large-scale system over a long production period and could be frequently harvested with the same quality and quantity, which will circumvent the challenge for clinical application. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-021-02190-3.