Cargando…

Constructing a ceRNA-immunoregulatory network associated with the development and prognosis of human atherosclerosis through weighted gene co-expression network analysis

There is now overwhelming experimental and clinical evidence that atherosclerosis (AS) is a chronic inflammatory disease. The recent discovery of a new group of mediators known as competing endogenous RNA (ceRNA) offers a unique opportunity for investigating immunoregulation in AS. In this study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yaozhong, Liu, Na, Liu, Qiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880393/
https://www.ncbi.nlm.nih.gov/pubmed/33460396
http://dx.doi.org/10.18632/aging.202486
Descripción
Sumario:There is now overwhelming experimental and clinical evidence that atherosclerosis (AS) is a chronic inflammatory disease. The recent discovery of a new group of mediators known as competing endogenous RNA (ceRNA) offers a unique opportunity for investigating immunoregulation in AS. In this study, we used gene expression profiles from GEO database to construct a lncRNA-miRNA-mRNA ceRNA network during AS plaque development through weighted gene co-expression network analysis (WGCNA). GO annotation and pathway enrichment analysis suggested that the ceRNA network was mainly involved in the immune response. CIBERSORT and GSVA were used to calculate the immune cell infiltration score and identified macrophage as hub immunocyte in plaque development. A macrophage related ceRNA subnetwork was constructed through correlation analysis. Samples from Biobank of Karolinska Endarterectomy (BiKE) were used to identify prognostic factors from the subnetwork and yielded 7 hub factors that can predict ischemic events including macrophage GSVA score and expression value of AL138756.1, CTSB, MAFB, LYN, GRK3, and BID. A nomogram based on the key factors was established. GSEA identified that the PD1 signaling pathway was negatively associated with these prognostic factors which may explain the cardiovascular side effect of immune checkpoint therapy in anti-tumor treatment.