Cargando…

Mendelian randomization study of telomere length and bone mineral density

Purpose: Some epidemiological studies and animal studies have reported a relationship between leukocyte telomere length (LTL) and bone mineral density (BMD). However, the causality underlying the purported relationship has not been determined. Here we performed a two-sample MR analysis to test the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fashuai, Huang, Yu, Hu, Jialu, Shao, Zengwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880394/
https://www.ncbi.nlm.nih.gov/pubmed/33323545
http://dx.doi.org/10.18632/aging.202197
Descripción
Sumario:Purpose: Some epidemiological studies and animal studies have reported a relationship between leukocyte telomere length (LTL) and bone mineral density (BMD). However, the causality underlying the purported relationship has not been determined. Here we performed a two-sample MR analysis to test the causal link between telomere length and BMD. Results: Our research suggested no causal link of LTL and BMD using IVW method. The weighted median, MR-Egger regression and MR.RAPS method yielded a similar pattern of effects. MR-Egger intercept test demonstrated our results were not influenced by pleiotropy. Heterogeneities among the genetic variants on heel estimated BMD and TB-BMD vanished after excluding rs6028466. “Leave-one-out” sensitivity analysis confirmed the stability of our results. Conclusion: Our MR analysis did not support causal effect of telomere length on BMD. Methods: We utilized 5 independent SNPs robustly associated with LTL as instrument variables. The outcome results were obtained from GWAS summary data of BMD. The two-sample MR analysis was conducted using IVW, weighted median, MR-Egger regression and MR.RAPS method. MR-Egger intercept test, Cochran’s Q test and I(2) statistics and “leave-one-out” sensitivity analysis were performed to evaluate the horizontal pleiotropy, heterogeneities and stability of these genetic variants on BMD.