Cargando…
Development of a time-resolved mirrorless scintillation detector
PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintill...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880495/ https://www.ncbi.nlm.nih.gov/pubmed/33577602 http://dx.doi.org/10.1371/journal.pone.0246742 |
_version_ | 1783650715919450112 |
---|---|
author | Cheon, Wonjoong Jung, Hyunuk Lee, Moonhee Lee, Jinhyeop Kim, Sung Jin Cho, Sungkoo Han, Youngyih |
author_facet | Cheon, Wonjoong Jung, Hyunuk Lee, Moonhee Lee, Jinhyeop Kim, Sung Jin Cho, Sungkoo Han, Youngyih |
author_sort | Cheon, Wonjoong |
collection | PubMed |
description | PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintillator plate without a mirror. The camera was installed at a certain angle from the horizontal plane to collect scintillation from the scintillator plate. The geometric distortion due to the absence of a mirror and camera lens was corrected using a projective transform. Variations in brightness due to the distance between the image sensor and each point on the scintillator plate and the inhomogeneity of the material constituting the scintillator were corrected using a 20.0 × 20.0 cm(2) radiation field. Hot pixels were removed using a frame-based noise-reduction technique. Finally, a CNN-based 2D dose distribution deconvolution model was applied to compensate for the dose error in the penumbra region and a lack of backscatter. The linearity, reproducibility, dose rate dependency, and dose profile were tested for a 6 MV X-ray beam to verify dosimeter characteristics. Gamma analysis was performed for two simple and 10 clinical intensity-modulated radiation therapy (IMRT) plans. RESULTS: The dose linearity with brightness ranging from 0.0 cGy to 200.0 cGy was 0.9998 (R-squared value), and the root-mean-square error value was 1.010. For five consecutive measurements, the reproducibility was within 3% error, and the dose rate dependency was within 1%. The depth dose distribution and lateral dose profile coincided with the ionization chamber data with a 1% mean error. In 2D dosimetry for IMRT plans, the mean gamma passing rates with a 3%/3 mm gamma criterion for the two simple and ten clinical IMRT plans were 96.77% and 95.75%, respectively. CONCLUSION: The verified accuracy and time-resolved characteristics of the dosimeter may be useful for the quality assurance of machines and patient-specific quality assurance for clinical step-and-shoot IMRT plans. |
format | Online Article Text |
id | pubmed-7880495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78804952021-02-19 Development of a time-resolved mirrorless scintillation detector Cheon, Wonjoong Jung, Hyunuk Lee, Moonhee Lee, Jinhyeop Kim, Sung Jin Cho, Sungkoo Han, Youngyih PLoS One Research Article PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintillator plate without a mirror. The camera was installed at a certain angle from the horizontal plane to collect scintillation from the scintillator plate. The geometric distortion due to the absence of a mirror and camera lens was corrected using a projective transform. Variations in brightness due to the distance between the image sensor and each point on the scintillator plate and the inhomogeneity of the material constituting the scintillator were corrected using a 20.0 × 20.0 cm(2) radiation field. Hot pixels were removed using a frame-based noise-reduction technique. Finally, a CNN-based 2D dose distribution deconvolution model was applied to compensate for the dose error in the penumbra region and a lack of backscatter. The linearity, reproducibility, dose rate dependency, and dose profile were tested for a 6 MV X-ray beam to verify dosimeter characteristics. Gamma analysis was performed for two simple and 10 clinical intensity-modulated radiation therapy (IMRT) plans. RESULTS: The dose linearity with brightness ranging from 0.0 cGy to 200.0 cGy was 0.9998 (R-squared value), and the root-mean-square error value was 1.010. For five consecutive measurements, the reproducibility was within 3% error, and the dose rate dependency was within 1%. The depth dose distribution and lateral dose profile coincided with the ionization chamber data with a 1% mean error. In 2D dosimetry for IMRT plans, the mean gamma passing rates with a 3%/3 mm gamma criterion for the two simple and ten clinical IMRT plans were 96.77% and 95.75%, respectively. CONCLUSION: The verified accuracy and time-resolved characteristics of the dosimeter may be useful for the quality assurance of machines and patient-specific quality assurance for clinical step-and-shoot IMRT plans. Public Library of Science 2021-02-12 /pmc/articles/PMC7880495/ /pubmed/33577602 http://dx.doi.org/10.1371/journal.pone.0246742 Text en © 2021 Cheon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cheon, Wonjoong Jung, Hyunuk Lee, Moonhee Lee, Jinhyeop Kim, Sung Jin Cho, Sungkoo Han, Youngyih Development of a time-resolved mirrorless scintillation detector |
title | Development of a time-resolved mirrorless scintillation detector |
title_full | Development of a time-resolved mirrorless scintillation detector |
title_fullStr | Development of a time-resolved mirrorless scintillation detector |
title_full_unstemmed | Development of a time-resolved mirrorless scintillation detector |
title_short | Development of a time-resolved mirrorless scintillation detector |
title_sort | development of a time-resolved mirrorless scintillation detector |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880495/ https://www.ncbi.nlm.nih.gov/pubmed/33577602 http://dx.doi.org/10.1371/journal.pone.0246742 |
work_keys_str_mv | AT cheonwonjoong developmentofatimeresolvedmirrorlessscintillationdetector AT junghyunuk developmentofatimeresolvedmirrorlessscintillationdetector AT leemoonhee developmentofatimeresolvedmirrorlessscintillationdetector AT leejinhyeop developmentofatimeresolvedmirrorlessscintillationdetector AT kimsungjin developmentofatimeresolvedmirrorlessscintillationdetector AT chosungkoo developmentofatimeresolvedmirrorlessscintillationdetector AT hanyoungyih developmentofatimeresolvedmirrorlessscintillationdetector |