Cargando…
A reservoir computing approach for forecasting and regenerating both dynamical and time-delay controlled financial system behavior
Significant research in reservoir computing over the past two decades has revived interest in recurrent neural networks. Owing to its ingrained capability of performing high-speed and low-cost computations this has become a panacea for multi-variate complex systems having non-linearity within their...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880499/ https://www.ncbi.nlm.nih.gov/pubmed/33577571 http://dx.doi.org/10.1371/journal.pone.0246737 |
Sumario: | Significant research in reservoir computing over the past two decades has revived interest in recurrent neural networks. Owing to its ingrained capability of performing high-speed and low-cost computations this has become a panacea for multi-variate complex systems having non-linearity within their relationships. Modelling economic and financial trends has always been a challenging task owing to their volatile nature and no linear dependence on associated influencers. Prior studies aimed at effectively forecasting such financial systems, but, always left a visible room for optimization in terms of cost, speed and modelling complexities. Our work employs a reservoir computing approach complying to echo-state network principles, along with varying strengths of time-delayed feedback to model a complex financial system. The derived model is demonstrated to act robustly towards influence of trends and other fluctuating parameters by effectively forecasting long-term system behavior. Moreover, it also re-generates the financial system unknowns with a high degree of accuracy when only limited future data is available, thereby, becoming a reliable feeder for any long-term decision making or policy formulations. |
---|