Cargando…
Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics
Flexible resonant acoustic sensors have attracted substantial attention as an essential component for intuitive human-machine interaction (HMI) in the future voice user interface (VUI). Several researches have been reported by mimicking the basilar membrane but still have dimensional drawback due to...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880591/ https://www.ncbi.nlm.nih.gov/pubmed/33579699 http://dx.doi.org/10.1126/sciadv.abe5683 |
Sumario: | Flexible resonant acoustic sensors have attracted substantial attention as an essential component for intuitive human-machine interaction (HMI) in the future voice user interface (VUI). Several researches have been reported by mimicking the basilar membrane but still have dimensional drawback due to limitation of controlling a multifrequency band and broadening resonant spectrum for full-cover phonetic frequencies. Here, highly sensitive piezoelectric mobile acoustic sensor (PMAS) is demonstrated by exploiting an ultrathin membrane for biomimetic frequency band control. Simulation results prove that resonant bandwidth of a piezoelectric film can be broadened by adopting a lead-zirconate-titanate (PZT) membrane on the ultrathin polymer to cover the entire voice spectrum. Machine learning–based biometric authentication is demonstrated by the integrated acoustic sensor module with an algorithm processor and customized Android app. Last, exceptional error rate reduction in speaker identification is achieved by a PMAS module with a small amount of training data, compared to a conventional microelectromechanical system microphone. |
---|