Cargando…
Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests
Extreme weather events and the presence of mega-hydroelectric dams, when combined, present an emerging threat to natural habitats in the Amazon region. To understand the magnitude of these impacts, we used remote sensing data to assess forest loss in areas affected by the extreme 2014 flood in the e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880702/ https://www.ncbi.nlm.nih.gov/pubmed/33578410 http://dx.doi.org/10.1371/journal.pone.0245991 |
_version_ | 1783650749774823424 |
---|---|
author | Oliveira, Washington Luis Medeiros, Marcelo Brilhante Moser, Pamela Simon, Marcelo Fragomeni |
author_facet | Oliveira, Washington Luis Medeiros, Marcelo Brilhante Moser, Pamela Simon, Marcelo Fragomeni |
author_sort | Oliveira, Washington Luis |
collection | PubMed |
description | Extreme weather events and the presence of mega-hydroelectric dams, when combined, present an emerging threat to natural habitats in the Amazon region. To understand the magnitude of these impacts, we used remote sensing data to assess forest loss in areas affected by the extreme 2014 flood in the entire Madeira River basin, the location of two mega-dams. In addition, forest plots (26 ha) were monitored between 2011 and 2015 (14,328 trees) in order to evaluate changes in tree mortality, aboveground biomass (AGB), species composition and community structure around the Jirau reservoir (distance between plots varies from 1 to 80 km). We showed that the mega-dams were the main driver of tree mortality in Madeira basin forests after the 2014 extreme flood. Forest loss in the areas surrounding the reservoirs was 56 km(2) in Santo Antônio, 190 km(2) in Jirau (7.4–9.2% of the forest cover before flooding), and 79.9% above that predicted in environmental impact assessments. We also show that climatic anomalies, albeit with much smaller impact than that created by the mega-dams, resulted in forest loss along different Madeira sub-basins not affected by dams (34–173 km(2); 0.5–1.7%). The impact of flooding was greater in várzea and transitional forests, resulting in high rates of tree mortality (88–100%), AGB decrease (89–100%), and reduction of species richness (78–100%). Conversely, campinarana forests were more flood-tolerant with a slight decrease in species richness (6%) and similar AGB after flooding. Taking together satellite and field measurements, we estimate that the 2014 flood event in the Madeira basin resulted in 8.81–12.47 ∙ 10(6) tons of dead biomass. Environmental impact studies required for environmental licensing of mega-dams by governmental agencies should consider the increasing trend of climatic anomalies and the high vulnerability of different habitats to minimize the serious impacts of dams on Amazonian biodiversity and carbon stocks. |
format | Online Article Text |
id | pubmed-7880702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78807022021-02-23 Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests Oliveira, Washington Luis Medeiros, Marcelo Brilhante Moser, Pamela Simon, Marcelo Fragomeni PLoS One Research Article Extreme weather events and the presence of mega-hydroelectric dams, when combined, present an emerging threat to natural habitats in the Amazon region. To understand the magnitude of these impacts, we used remote sensing data to assess forest loss in areas affected by the extreme 2014 flood in the entire Madeira River basin, the location of two mega-dams. In addition, forest plots (26 ha) were monitored between 2011 and 2015 (14,328 trees) in order to evaluate changes in tree mortality, aboveground biomass (AGB), species composition and community structure around the Jirau reservoir (distance between plots varies from 1 to 80 km). We showed that the mega-dams were the main driver of tree mortality in Madeira basin forests after the 2014 extreme flood. Forest loss in the areas surrounding the reservoirs was 56 km(2) in Santo Antônio, 190 km(2) in Jirau (7.4–9.2% of the forest cover before flooding), and 79.9% above that predicted in environmental impact assessments. We also show that climatic anomalies, albeit with much smaller impact than that created by the mega-dams, resulted in forest loss along different Madeira sub-basins not affected by dams (34–173 km(2); 0.5–1.7%). The impact of flooding was greater in várzea and transitional forests, resulting in high rates of tree mortality (88–100%), AGB decrease (89–100%), and reduction of species richness (78–100%). Conversely, campinarana forests were more flood-tolerant with a slight decrease in species richness (6%) and similar AGB after flooding. Taking together satellite and field measurements, we estimate that the 2014 flood event in the Madeira basin resulted in 8.81–12.47 ∙ 10(6) tons of dead biomass. Environmental impact studies required for environmental licensing of mega-dams by governmental agencies should consider the increasing trend of climatic anomalies and the high vulnerability of different habitats to minimize the serious impacts of dams on Amazonian biodiversity and carbon stocks. Public Library of Science 2021-02-12 /pmc/articles/PMC7880702/ /pubmed/33578410 http://dx.doi.org/10.1371/journal.pone.0245991 Text en © 2021 Oliveira et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Oliveira, Washington Luis Medeiros, Marcelo Brilhante Moser, Pamela Simon, Marcelo Fragomeni Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title | Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title_full | Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title_fullStr | Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title_full_unstemmed | Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title_short | Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests |
title_sort | mega-dams and extreme rainfall: disentangling the drivers of extensive impacts of a large flooding event on amazon forests |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880702/ https://www.ncbi.nlm.nih.gov/pubmed/33578410 http://dx.doi.org/10.1371/journal.pone.0245991 |
work_keys_str_mv | AT oliveirawashingtonluis megadamsandextremerainfalldisentanglingthedriversofextensiveimpactsofalargefloodingeventonamazonforests AT medeirosmarcelobrilhante megadamsandextremerainfalldisentanglingthedriversofextensiveimpactsofalargefloodingeventonamazonforests AT moserpamela megadamsandextremerainfalldisentanglingthedriversofextensiveimpactsofalargefloodingeventonamazonforests AT simonmarcelofragomeni megadamsandextremerainfalldisentanglingthedriversofextensiveimpactsofalargefloodingeventonamazonforests |