Cargando…
Ability of Current Machine Learning Algorithms to Predict and Detect Hypoglycemia in Patients With Diabetes Mellitus: Meta-analysis
BACKGROUND: Machine learning (ML) algorithms have been widely introduced to diabetes research including those for the identification of hypoglycemia. OBJECTIVE: The objective of this meta-analysis is to assess the current ability of ML algorithms to detect hypoglycemia (ie, alert to hypoglycemia coi...
Autores principales: | Kodama, Satoru, Fujihara, Kazuya, Shiozaki, Haruka, Horikawa, Chika, Yamada, Mayuko Harada, Sato, Takaaki, Yaguchi, Yuta, Yamamoto, Masahiko, Kitazawa, Masaru, Iwanaga, Midori, Matsubayashi, Yasuhiro, Sone, Hirohito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880810/ https://www.ncbi.nlm.nih.gov/pubmed/33512324 http://dx.doi.org/10.2196/22458 |
Ejemplares similares
-
Impact of metabolic syndrome and metabolic dysfunction-associated fatty liver disease on cardiovascular risk by the presence or absence of type 2 diabetes and according to sex
por: Matsubayashi, Yasuhiro, et al.
Publicado: (2022) -
Impact of prior cerebrovascular disease and glucose status on incident cerebrovascular disease in Japanese
por: Oe, Momoko, et al.
Publicado: (2021) -
Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta‐analysis
por: Kodama, Satoru, et al.
Publicado: (2022) -
Combination of diabetes mellitus and lack of habitual physical activity is a risk factor for functional disability in Japanese
por: Fujihara, Kazuya, et al.
Publicado: (2020) -
Rates and risk factors for amputation in people with diabetes in Japan: a historical cohort study using a nationwide claims database
por: Kaneko, Masanori, et al.
Publicado: (2021)