Cargando…
Identifying normal mammograms in a large screening population using artificial intelligence
OBJECTIVES: To evaluate the potential of artificial intelligence (AI) to identify normal mammograms in a screening population. METHODS: In this retrospective study, 9581 double-read mammography screening exams including 68 screen-detected cancers and 187 false positives, a subcohort of the prospecti...
Autores principales: | Lång, Kristina, Dustler, Magnus, Dahlblom, Victor, Åkesson, Anna, Andersson, Ingvar, Zackrisson, Sophia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880910/ https://www.ncbi.nlm.nih.gov/pubmed/32876835 http://dx.doi.org/10.1007/s00330-020-07165-1 |
Ejemplares similares
-
Breast cancer screening with digital breast tomosynthesis: comparison of different reading strategies implementing artificial intelligence
por: Dahlblom, Victor, et al.
Publicado: (2022) -
Can mechanical imaging increase the specificity of mammography screening?
por: Dustler, Magnus, et al.
Publicado: (2017) -
Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study
por: Rodriguez-Ruiz, Alejandro, et al.
Publicado: (2019) -
False positives in breast cancer screening with one-view breast tomosynthesis: An analysis of findings leading to recall, work-up and biopsy rates in the Malmö Breast Tomosynthesis Screening Trial
por: Lång, Kristina, et al.
Publicado: (2016) -
Can artificial intelligence reduce the interval cancer rate in mammography screening?
por: Lång, Kristina, et al.
Publicado: (2021)