Cargando…
From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats
ABSTRACT: We present a theory for the self-propulsion of symmetric, half-spherical Marangoni boats (soap or camphor boats) at low Reynolds numbers. Propulsion is generated by release (diffusive emission or dissolution) of water-soluble surfactant molecules, which modulate the air–water interfacial t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880915/ https://www.ncbi.nlm.nih.gov/pubmed/33580288 http://dx.doi.org/10.1140/epje/s10189-021-00034-9 |
_version_ | 1783650768339861504 |
---|---|
author | Ender, Hendrik Kierfeld, Jan |
author_facet | Ender, Hendrik Kierfeld, Jan |
author_sort | Ender, Hendrik |
collection | PubMed |
description | ABSTRACT: We present a theory for the self-propulsion of symmetric, half-spherical Marangoni boats (soap or camphor boats) at low Reynolds numbers. Propulsion is generated by release (diffusive emission or dissolution) of water-soluble surfactant molecules, which modulate the air–water interfacial tension. Propulsion either requires asymmetric release or spontaneous symmetry breaking by coupling to advection for a perfectly symmetrical swimmer. We study the diffusion–advection problem for a sphere in Stokes flow analytically and numerically both for constant concentration and constant flux boundary conditions. We derive novel results for concentration profiles under constant flux boundary conditions and for the Nusselt number (the dimensionless ratio of total emitted flux and diffusive flux). Based on these results, we analyze the Marangoni boat for small Marangoni propulsion (low Peclet number) and show that two swimming regimes exist, a diffusive regime at low velocities and an advection-dominated regime at high swimmer velocities. We describe both the limit of large Marangoni propulsion (high Peclet number) and the effects from evaporation by approximative analytical theories. The swimming velocity is determined by force balance, and we obtain a general expression for the Marangoni forces, which comprises both direct Marangoni forces from the surface tension gradient along the air–water–swimmer contact line and Marangoni flow forces. We unravel whether the Marangoni flow contribution is exerting a forward or backward force during propulsion. Our main result is the relation between Peclet number and swimming velocity. Spontaneous symmetry breaking and, thus, swimming occur for a perfectly symmetrical swimmer above a critical Peclet number, which becomes small for large system sizes. We find a supercritical swimming bifurcation for a symmetric swimmer and an avoided bifurcation in the presence of an asymmetry. GRAPHIC ABSTRACT: [Image: see text] |
format | Online Article Text |
id | pubmed-7880915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-78809152021-02-18 From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats Ender, Hendrik Kierfeld, Jan Eur Phys J E Soft Matter Regular Article - Flowing Matter ABSTRACT: We present a theory for the self-propulsion of symmetric, half-spherical Marangoni boats (soap or camphor boats) at low Reynolds numbers. Propulsion is generated by release (diffusive emission or dissolution) of water-soluble surfactant molecules, which modulate the air–water interfacial tension. Propulsion either requires asymmetric release or spontaneous symmetry breaking by coupling to advection for a perfectly symmetrical swimmer. We study the diffusion–advection problem for a sphere in Stokes flow analytically and numerically both for constant concentration and constant flux boundary conditions. We derive novel results for concentration profiles under constant flux boundary conditions and for the Nusselt number (the dimensionless ratio of total emitted flux and diffusive flux). Based on these results, we analyze the Marangoni boat for small Marangoni propulsion (low Peclet number) and show that two swimming regimes exist, a diffusive regime at low velocities and an advection-dominated regime at high swimmer velocities. We describe both the limit of large Marangoni propulsion (high Peclet number) and the effects from evaporation by approximative analytical theories. The swimming velocity is determined by force balance, and we obtain a general expression for the Marangoni forces, which comprises both direct Marangoni forces from the surface tension gradient along the air–water–swimmer contact line and Marangoni flow forces. We unravel whether the Marangoni flow contribution is exerting a forward or backward force during propulsion. Our main result is the relation between Peclet number and swimming velocity. Spontaneous symmetry breaking and, thus, swimming occur for a perfectly symmetrical swimmer above a critical Peclet number, which becomes small for large system sizes. We find a supercritical swimming bifurcation for a symmetric swimmer and an avoided bifurcation in the presence of an asymmetry. GRAPHIC ABSTRACT: [Image: see text] Springer Berlin Heidelberg 2021-02-12 2021 /pmc/articles/PMC7880915/ /pubmed/33580288 http://dx.doi.org/10.1140/epje/s10189-021-00034-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Regular Article - Flowing Matter Ender, Hendrik Kierfeld, Jan From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title | From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title_full | From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title_fullStr | From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title_full_unstemmed | From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title_short | From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats |
title_sort | from diffusive mass transfer in stokes flow to low reynolds number marangoni boats |
topic | Regular Article - Flowing Matter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880915/ https://www.ncbi.nlm.nih.gov/pubmed/33580288 http://dx.doi.org/10.1140/epje/s10189-021-00034-9 |
work_keys_str_mv | AT enderhendrik fromdiffusivemasstransferinstokesflowtolowreynoldsnumbermarangoniboats AT kierfeldjan fromdiffusivemasstransferinstokesflowtolowreynoldsnumbermarangoniboats |