Cargando…
Accuracy of controlled attenuation parameter compared with ultrasound for detecting hepatic steatosis in children with severe obesity
OBJECTIVES: To determine the diagnostic accuracy of controlled attenuation parameter (CAP) on FibroScan(®) in detecting and grading steatosis in a screening setting and perform a head-to-head comparison with conventional B-mode ultrasound. METHODS: Sixty children with severe obesity (median BMI z-sc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880971/ https://www.ncbi.nlm.nih.gov/pubmed/32910234 http://dx.doi.org/10.1007/s00330-020-07245-2 |
Sumario: | OBJECTIVES: To determine the diagnostic accuracy of controlled attenuation parameter (CAP) on FibroScan(®) in detecting and grading steatosis in a screening setting and perform a head-to-head comparison with conventional B-mode ultrasound. METHODS: Sixty children with severe obesity (median BMI z-score 3.37; median age 13.7 years) were evaluated. All underwent CAP and US using a standardized scoring system. Magnetic resonance spectroscopy proton density fat fraction (MRS-PDFF) was used as a reference standard. RESULTS: Steatosis was present in 36/60 (60%) children. The areas under the ROC (AUROC) of CAP for the detection of grade ≥ S1, ≥ S2, and ≥ S3 steatosis were 0.80 (95% CI: 0.67–0.89), 0.77 (95% CI: 0.65–0.87), and 0.79 (95% CI: 0.66–0.88), respectively. The AUROC of US for the detection of grade ≥ S1 steatosis was 0.68 (95% CI: 0.55–0.80) and not significantly different from that of CAP (p = 0.09). For detecting ≥ S1 steatosis, using the optimal cutoffs, CAP (277 dB/m) and US (US steatosis score ≥ 2) had a sensitivity of 75% and 61% and a specificity of 75% and 71%, respectively. When using echogenicity of liver parenchyma as only the scoring item, US had a sensitivity of 70% and specificity of 46% to detect ≥ S1 steatosis. The difference in specificity of CAP and US when using only echogenicity of liver parenchyma of 29% was significant (p = 0.04). CONCLUSION: The overall performance of CAP is not significantly better than that of US in detecting steatosis in children with obesity, provided that the standardized scoring of US features is applied. When US is based on liver echogenicity only, CAP outperforms US in screening for any steatosis (≥ S1). KEY POINTS: • The areas under the ROC curves of CAP and ultrasound (US) for detecting grade ≥ S1 steatosis were 0.80 and 0.68, respectively, and were not significantly different (p = 0.09). • For detecting grade ≥ S1 steatosis in severely obese children, CAP had a sensitivity of 75% and a specificity of 75% at its optimal cutoff value of 277 dB/m. • For detecting grade ≥ S1 steatosis in clinical practice, both CAP and US can be used, provided that the standardized scoring of US images is used. |
---|