Cargando…
Laser-induced layers peeling of sputtering coatings at 1064 nm wavelength
Large-scale layers peeling after the laser irradiation of dual ion beam sputtering coatings is discovered and a model is established to explain it. The laser damage morphologies relate to the laser fluence, showing thermomechanical coupling failure at low energy and coating layers separation at high...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881021/ https://www.ncbi.nlm.nih.gov/pubmed/33580089 http://dx.doi.org/10.1038/s41598-020-80304-2 |
Sumario: | Large-scale layers peeling after the laser irradiation of dual ion beam sputtering coatings is discovered and a model is established to explain it. The laser damage morphologies relate to the laser fluence, showing thermomechanical coupling failure at low energy and coating layers separation at high energy. High-pressure gradients appear in the interaction between laser and coatings, resulting in large-scale layer separation. A two-step laser damage model including defect-induced damage process and ionized air wave damage process is proposed to explain the two phenomena at different energy. At relatively high energies (higher than 20 J/cm(2)), ionization of the air can be initiated, leading to a peeling off effect. The peeling effect is related to the thermomechanical properties of the coating materials. |
---|