Cargando…

Semiconductor-less vertical transistor with I(ON)/I(OFF) of 10(6)

Semiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are di...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jun-Ho, Shin, Dong Hoon, Yang, Heejun, Jeong, Nae Bong, Park, Do-Hyun, Watanabe, Kenji, Taniguchi, Takashi, Kim, Eunah, Lee, Sang Wook, Jhang, Sung Ho, Park, Bae Ho, Kuk, Young, Chung, Hyun-Jong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881104/
https://www.ncbi.nlm.nih.gov/pubmed/33579924
http://dx.doi.org/10.1038/s41467-021-21138-y
Descripción
Sumario:Semiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are difficult to control, and semiconducting channel materials remain indispensable for practical switching. In this study, we report a semiconductor-less solid-state electronic device that exhibits an industry-applicable switching of the ballistic current. This device modulates the field emission barrier height across the graphene-hexagonal boron nitride interface with I(ON)/I(OFF) of 10(6) obtained from the transfer curves and adjustable intrinsic gain up to 4, and exhibits unprecedented current stability in temperature range of 15–400 K. The vertical device operation can be optimized with the capacitive coupling in the device geometry. The semiconductor-less switching resolves the long-standing issue of temperature-dependent device performance, thereby extending the potential of 2D van der Waals devices to applications in extreme environments.