Cargando…
Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties
Functional diversity rather than species richness is critical for the understanding of ecological patterns and processes. This study aimed to develop novel integrated analytical strategies for the functional characterization of fish diversity based on the quantification, prediction and integration o...
Autores principales: | Wei, Feifei, Ito, Kengo, Sakata, Kenji, Asakura, Taiga, Date, Yasuhiro, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881121/ https://www.ncbi.nlm.nih.gov/pubmed/33580151 http://dx.doi.org/10.1038/s41598-021-83194-0 |
Ejemplares similares
-
Large-Scale Evaluation of Major Soluble Macromolecular Components of Fish Muscle from a Conventional (1)H-NMR Spectral Database
por: Wei, Feifei, et al.
Publicado: (2020) -
Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches
por: Asakura, Taiga, et al.
Publicado: (2014) -
Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem
por: Wei, Feifei, et al.
Publicado: (2018) -
Relaxometric learning: a pattern recognition method for T(2) relaxation curves based on machine learning supported by an analytical framework
por: Date, Yasuhiro, et al.
Publicado: (2021) -
Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals
por: Ito, Kengo, et al.
Publicado: (2018)