Cargando…
Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
Across jurisdictions, government and health insurance providers hold a large amount of data from patient interactions with the healthcare system. We aimed to develop a machine learning-based model for predicting adverse outcomes due to diabetes complications using administrative health data from the...
Autores principales: | Ravaut, Mathieu, Sadeghi, Hamed, Leung, Kin Kwan, Volkovs, Maksims, Kornas, Kathy, Harish, Vinyas, Watson, Tristan, Lewis, Gary F., Weisman, Alanna, Poutanen, Tomi, Rosella, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881135/ https://www.ncbi.nlm.nih.gov/pubmed/33580109 http://dx.doi.org/10.1038/s41746-021-00394-8 |
Ejemplares similares
-
Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes
por: Ravaut, Mathieu, et al.
Publicado: (2021) -
Developing Machine Learning Algorithms on Routinely Collected Administrative Health Data - Lessons from Ontario, Canada.
por: Harish, Vinyas, et al.
Publicado: (2022) -
Predicting hospitalisations related to ambulatory care sensitive conditions with machine learning for population health planning: derivation and validation cohort study
por: Yi, Seung Eun, et al.
Publicado: (2022) -
Risk stratification for COVID-19 hospitalization: a multivariable model based on gradient-boosting decision trees
por: Gutierrez, Jahir M., et al.
Publicado: (2021) -
Changing relative and absolute socioeconomic health inequalities in Ontario, Canada: A population-based cohort study of adult premature mortality, 1992 to 2017
por: Buajitti, Emmalin, et al.
Publicado: (2020)