Cargando…
Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn(2)As(2)
Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn(2)As(2) is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insul...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881193/ https://www.ncbi.nlm.nih.gov/pubmed/33579928 http://dx.doi.org/10.1038/s41467-021-21154-y |
Sumario: | Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn(2)As(2) is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn(2)As(2) actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180(∘) rotation and time-reversal symmetries: [Formula: see text] . Surfaces protected by [Formula: see text] are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μ(0)H ≈ 1 to 2 T can tune between gapless and gapped surface states. |
---|