Cargando…
Deep graph cut network for weakly-supervised semantic segmentation
The scarcity of fully-annotated data becomes the biggest obstacle that prevents many deep learning approaches from widely applied. Weakly-supervised visual learning which can utilize inexact annotations is developed rapidly to remedy such a situation. In this paper, we study the weakly-supervised ta...
Autores principales: | Feng, Jiapei, Wang, Xinggang, Liu, Wenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Science China Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881314/ http://dx.doi.org/10.1007/s11432-020-3065-4 |
Ejemplares similares
-
Activation extending based on long-range dependencies for weakly supervised semantic segmentation
por: Liu, Haipeng, et al.
Publicado: (2023) -
Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process
por: Moghalles, Khaled, et al.
Publicado: (2022) -
Weakly Supervised Polyp Segmentation in Colonoscopy Images Using Deep Neural Networks
por: Chen, Siwei, et al.
Publicado: (2022) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
Weakly supervised semantic segmentation for MRI: exploring the advantages and disadvantages of class activation maps for biological image segmentation with soft boundaries
por: Syed, Shaheen, et al.
Publicado: (2023)