Cargando…
MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities
BACKGROUND: Microbes are closely related to human health and diseases. Identification of disease-related microbes is of great significance for revealing the pathological mechanism of human diseases and understanding the interaction mechanisms between microbes and humans, which is also useful for the...
Autores principales: | Xu, Da, Xu, Hanxiao, Zhang, Yusen, Wang, Mingyi, Chen, Wei, Gao, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881563/ https://www.ncbi.nlm.nih.gov/pubmed/33579301 http://dx.doi.org/10.1186/s12967-021-02732-6 |
Ejemplares similares
-
MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction
por: Wang, Fan, et al.
Publicado: (2017) -
A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square
por: Zhao, Yan, et al.
Publicado: (2018) -
Novel Collaborative Weighted Non-negative Matrix Factorization Improves Prediction of Disease-Associated Human Microbes
por: Xu, Da, et al.
Publicado: (2022) -
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015)