Cargando…

Predictors of cervical myelopathy and hydrocephalus in young children with achondroplasia

BACKGROUND: Cervical myelopathy and hydrocephalus occasionally occur in young children with achondroplasia. However, these conditions are not evaluated in a timely manner in many cases. The current study presents significant predictors for cervical myelopathy and hydrocephalus in young children with...

Descripción completa

Detalles Bibliográficos
Autores principales: Shim, Youngbo, Ko, Jung Min, Cho, Tae-Joon, Kim, Seung‐Ki, Phi, Ji Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881633/
https://www.ncbi.nlm.nih.gov/pubmed/33579320
http://dx.doi.org/10.1186/s13023-021-01725-4
Descripción
Sumario:BACKGROUND: Cervical myelopathy and hydrocephalus occasionally occur in young children with achondroplasia. However, these conditions are not evaluated in a timely manner in many cases. The current study presents significant predictors for cervical myelopathy and hydrocephalus in young children with achondroplasia. METHODS: A retrospective analysis of 65 patients with achondroplasia who visited Seoul National University Children’s Hospital since 2012 was performed. The patients were divided into groups according to the presence of cervical myelopathy and hydrocephalus, and differences in foramen magnum parameters and ventricular parameters by magnetic resonance imaging between groups were analyzed. Predictors for cervical myelopathy and hydrocephalus were analyzed, and the cut-off points for significant ones were calculated. RESULTS: The group with cervical myelopathy showed foramen magnum parameters that indicated significantly lower cord thickness than in the group without cervical myelopathy, and the group with hydrocephalus showed significantly higher ventricular parameters and ‘Posterior indentation’ grade than the group without hydrocephalus. ‘Cord constriction ratio’ (OR 5199.90, p = 0.001) for cervical myelopathy and ‘Frontal horn width’ (OR 1.14, p = 0.001) and ‘Posterior indentation’ grade (grade 1: OR 9.25, p = 0.06; grade 2: OR 18.50, p = 0.01) for hydrocephalus were significant predictors. The cut-off points for cervical myelopathy were ‘Cord constriction ratio’ of 0.25 and ‘FM AP’ of 8 mm (AUC 0.821 and 0.862, respectively) and ‘Frontal horn width’ of 50 mm and ‘Posterior indentation’ grade of 0 (AUC 0.788 and 0.758, respectively) for hydrocephalus. CONCLUSION: ‘Cord constriction ratio’ for cervical myelopathy and ‘Frontal horn width’ and ‘Posterior indentation’ grade for hydrocephalus were significant predictors and may be used as useful parameters for management. ‘Posterior indentation’ grade may also be used to determine the treatment method for hydrocephalus.