Cargando…
The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models
The ability of accurate predictions of biological response (biological activity/property/toxicity) of a given chemical makes the quantitative structure‐activity/property/toxicity relationship (QSAR/QSPR/QSTR) models unique among the in silico tools. In addition, experimental data of selected species...
Autores principales: | Gajewicz-Skretna, Agnieszka, Kar, Supratik, Piotrowska, Magdalena, Leszczynski, Jerzy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881668/ https://www.ncbi.nlm.nih.gov/pubmed/33579384 http://dx.doi.org/10.1186/s13321-021-00484-5 |
Ejemplares similares
-
Nanomaterials – the Next Great Challenge for Qsar Modelers
por: Puzyn, Tomasz, et al.
Publicado: (2009) -
Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach
por: Kar, Supratik, et al.
Publicado: (2018) -
Extrapolative prediction using physically-based QSAR
por: Cleves, Ann E., et al.
Publicado: (2016) -
Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures
por: Kar, Supratik, et al.
Publicado: (2019) -
From Animal to Human: Interspecies Analysis Provides a Novel Way of Ascertaining and Fighting COVID-19
por: Kar, Supratik, et al.
Publicado: (2020)