Cargando…
A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing
The Illumina Infinium(®) MethylationEPIC BeadChip system (hereafter EPIC array) is considered to be the current gold standard detection method for assessing DNA methylation at the genome-wide level. EPIC arrays are often used for hypothesis generation or pilot studies, the natural conclusion to whic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881719/ https://www.ncbi.nlm.nih.gov/pubmed/33614276 http://dx.doi.org/10.7717/peerj.10762 |
_version_ | 1783650936693981184 |
---|---|
author | Noble, Alexandra J. Pearson, John F. Boden, Joseph M. Horwood, L. John Gemmell, Neil J. Kennedy, Martin A. Osborne, Amy J. |
author_facet | Noble, Alexandra J. Pearson, John F. Boden, Joseph M. Horwood, L. John Gemmell, Neil J. Kennedy, Martin A. Osborne, Amy J. |
author_sort | Noble, Alexandra J. |
collection | PubMed |
description | The Illumina Infinium(®) MethylationEPIC BeadChip system (hereafter EPIC array) is considered to be the current gold standard detection method for assessing DNA methylation at the genome-wide level. EPIC arrays are often used for hypothesis generation or pilot studies, the natural conclusion to which is to validate methylation candidates and expand these in a larger cohort, in a targeted manner. As such, an accurate smaller-scale, targeted technique, that generates data at the individual CpG level that is equivalent to the EPIC array, is needed. Here, we tested an alternative DNA methylation detection technique, known as bisulfite-based amplicon sequencing (BSAS), to determine its ability to validate CpG sites detected in EPIC array studies. BSAS was able to detect differential DNA methylation at CpG sites to a degree which correlates highly with the EPIC array system at some loci. However, BSAS correlated less well with EPIC array data in some instances, and most notably, when the magnitude of change via EPIC array was greater than 5%. Therefore, our data suggests that BSAS can be used to validate EPIC array data, but each locus must be compared on an individual basis, before being taken forward into large scale screening. Further, BSAS does offer advantages compared to the probe-based EPIC array; BSAS amplifies a region of the genome (∼500 bp) around a CpG of interest, allowing analyses of other CpGs in the region that may not be present on the EPIC array, aiding discovery of novel CpG sites and differentially methylated regions of interest. We conclude that BSAS offers a valid investigative tool for specific regions of the genome that are currently not contained on the array system. |
format | Online Article Text |
id | pubmed-7881719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78817192021-02-18 A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing Noble, Alexandra J. Pearson, John F. Boden, Joseph M. Horwood, L. John Gemmell, Neil J. Kennedy, Martin A. Osborne, Amy J. PeerJ Biochemistry The Illumina Infinium(®) MethylationEPIC BeadChip system (hereafter EPIC array) is considered to be the current gold standard detection method for assessing DNA methylation at the genome-wide level. EPIC arrays are often used for hypothesis generation or pilot studies, the natural conclusion to which is to validate methylation candidates and expand these in a larger cohort, in a targeted manner. As such, an accurate smaller-scale, targeted technique, that generates data at the individual CpG level that is equivalent to the EPIC array, is needed. Here, we tested an alternative DNA methylation detection technique, known as bisulfite-based amplicon sequencing (BSAS), to determine its ability to validate CpG sites detected in EPIC array studies. BSAS was able to detect differential DNA methylation at CpG sites to a degree which correlates highly with the EPIC array system at some loci. However, BSAS correlated less well with EPIC array data in some instances, and most notably, when the magnitude of change via EPIC array was greater than 5%. Therefore, our data suggests that BSAS can be used to validate EPIC array data, but each locus must be compared on an individual basis, before being taken forward into large scale screening. Further, BSAS does offer advantages compared to the probe-based EPIC array; BSAS amplifies a region of the genome (∼500 bp) around a CpG of interest, allowing analyses of other CpGs in the region that may not be present on the EPIC array, aiding discovery of novel CpG sites and differentially methylated regions of interest. We conclude that BSAS offers a valid investigative tool for specific regions of the genome that are currently not contained on the array system. PeerJ Inc. 2021-02-10 /pmc/articles/PMC7881719/ /pubmed/33614276 http://dx.doi.org/10.7717/peerj.10762 Text en ©2021 Noble et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Biochemistry Noble, Alexandra J. Pearson, John F. Boden, Joseph M. Horwood, L. John Gemmell, Neil J. Kennedy, Martin A. Osborne, Amy J. A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title | A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title_full | A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title_fullStr | A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title_full_unstemmed | A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title_short | A validation of Illumina EPIC array system with bisulfite-based amplicon sequencing |
title_sort | validation of illumina epic array system with bisulfite-based amplicon sequencing |
topic | Biochemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881719/ https://www.ncbi.nlm.nih.gov/pubmed/33614276 http://dx.doi.org/10.7717/peerj.10762 |
work_keys_str_mv | AT noblealexandraj avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT pearsonjohnf avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT bodenjosephm avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT horwoodljohn avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT gemmellneilj avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT kennedymartina avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT osborneamyj avalidationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT noblealexandraj validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT pearsonjohnf validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT bodenjosephm validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT horwoodljohn validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT gemmellneilj validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT kennedymartina validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing AT osborneamyj validationofilluminaepicarraysystemwithbisulfitebasedampliconsequencing |