Cargando…
Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states
BACKGROUND: A Susceptible–Exposed–Infected–Removed (SEIR) model was developed to forecast the spread of the novel coronavirus (SARS-CoV-2) in the United States and the implications of re-opening and hospital resource utilization. The model relies on the specification of various parameters that char...
Autor principal: | Yarsky, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881743/ https://www.ncbi.nlm.nih.gov/pubmed/33612959 http://dx.doi.org/10.1016/j.matcom.2021.01.022 |
Ejemplares similares
-
Application of genetic algorithm combined with improved SEIR model in predicting the epidemic trend of COVID-19, China
por: Qiu, Zhenzhen, et al.
Publicado: (2022) -
SEIR model with unreported infected population and dynamic parameters for the spread of COVID-19
por: Chen, Ziren, et al.
Publicado: (2022) -
SEIR modeling of the COVID-19 and its dynamics
por: He, Shaobo, et al.
Publicado: (2020) -
State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
por: Tello, Ivan F.Y., et al.
Publicado: (2022) -
Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model
por: Hatami, Faizeh, et al.
Publicado: (2022)