Cargando…
Identification of robust and reproducible CT‐texture metrics using a customized 3D‐printed texture phantom
OBJECTIVE: The objective of this study was to evaluate the robustness and reproducibility of computed tomography‐based texture analysis (CTTA) metrics extracted from CT images of a customized texture phantom built for assessing the association of texture metrics to three‐dimensional (3D) printed pro...
Autores principales: | Varghese, Bino A., Hwang, Darryl, Cen, Steven Y., Lei, Xiaomeng, Levy, Joshua, Desai, Bhushan, Goodenough, David J., Duddalwar, Vinay A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882093/ https://www.ncbi.nlm.nih.gov/pubmed/33434374 http://dx.doi.org/10.1002/acm2.13162 |
Ejemplares similares
-
Reliability of CT‐based texture features: Phantom study
por: Varghese, Bino A., et al.
Publicado: (2019) -
Spatial assessments in texture analysis: what the radiologist needs to know
por: Varghese, Bino A., et al.
Publicado: (2023) -
Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach
por: Fields, Brandon K. K., et al.
Publicado: (2023) -
Machine learning based predictors for COVID-19 disease severity
por: Patel, Dhruv, et al.
Publicado: (2021) -
Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs
por: Varghese, Bino Abel, et al.
Publicado: (2021)